
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282001612

INFLUENCE OF THE BOUNDARIES IN IMAGING FOR DAMAGE LOCALIZATION IN

1D DOMAINS

Conference Paper · July 2015

CITATION

1
READS

43

3 authors:

Some of the authors of this publication are also working on these related projects:

Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES View project

Symplegma: Java implementation for numerical methods in computational mechanics View project

Chrysoula Tsogka

University of California, Merced

116 PUBLICATIONS   2,173 CITATIONS   

SEE PROFILE

Ioannis Petromichelakis

Columbia University

13 PUBLICATIONS   28 CITATIONS   

SEE PROFILE

Christos Panagiotopoulos

Foundation for Research and Technology - Hellas

42 PUBLICATIONS   482 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Christos Panagiotopoulos on 22 September 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/282001612_INFLUENCE_OF_THE_BOUNDARIES_IN_IMAGING_FOR_DAMAGE_LOCALIZATION_IN_1D_DOMAINS?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/282001612_INFLUENCE_OF_THE_BOUNDARIES_IN_IMAGING_FOR_DAMAGE_LOCALIZATION_IN_1D_DOMAINS?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Algorithmic-Development-and-Analysis-of-Pioneer-Techniques-for-Imaging-with-waVES?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Symplegma-Java-implementation-for-numerical-methods-in-computational-mechanics?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chrysoula_Tsogka?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chrysoula_Tsogka?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Merced?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chrysoula_Tsogka?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Petromichelakis?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Petromichelakis?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Columbia_University?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ioannis_Petromichelakis?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos_Panagiotopoulos3?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos_Panagiotopoulos3?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Foundation_for_Research_and_Technology-Hellas?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos_Panagiotopoulos3?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos_Panagiotopoulos3?enrichId=rgreq-281789da7c4ff1955a929ec683ecc715-XXX&enrichSource=Y292ZXJQYWdlOzI4MjAwMTYxMjtBUzoyNzYzNzQxMTE5MTE5NTFAMTQ0MjkwNDEzMjAwMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


8th GRACM International Congress on Computational Mechanics,
Volos, 12 July - 15 July 2015

INFLUENCE OF THE BOUNDARIES IN IMAGING FOR DAMAGE
LOCALIZATION IN 1D DOMAINS

Chrysoula Tsogka and Yiannis Petromichelakis and Christos G. Panagiotopoulos

Institute of Applied and Computational Mathematics
Foundation for Research and Technology - Hellas

Heraklion, GR-70013, Greece
e-mail: tsogka@uoc.gr; web page: http://www.tem.uoc.gr/ tsogka

Keywords: Time reversal, Kirchhoff migration, wave propagation, finite element techniques, defect localization

Abstract: In the present work, we investigate the damage localization problem in 1D bounded domains and the
influence of the boundaries in the quality of the image, using recordings at a limited number of spatial points as the
input data. Based on the time reversal (TR) technique and utilizing the Green’s function of the Helmholtz equation,
the source localization problem is solved. This approach is then extended for the localization of defects given full
knowledge of the domain in the undamaged state. For further analyzing the image, which suffers by inherent noise
due to the presence of the boundaries, we utilize the modal expansion of the Green’s function and propose different
approaches for improving the quality of the image.

1 INTRODUCTION

The detection and localization of defects based on recordings at limited number of spatial points, falls into the
category of inverse problems which are usually ill-posed and hard to solve. A computational tool for solving a class
of inverse wave (and/or vibration) problems is the time reversal (TR) technique which was originally introduced
in [6] as a physical process. The principal idea behind TR is to sent back in the medium the recorded signals but
reversed in time. Due to the time-reversibility of the wave equation this process creates a back propagating wave
that will focus at the original source location. A defect or damaged area, can be understood to act as a secondary
source and therefore the principle of TR can be used to find its location. In this work we use time-reversal and
migration imaging techniques in order to detect and localize the defect.

We assume here that we can measure the scattered field, that is the difference between the total filed recorded
in the presence of the defect and the incident field which corresponds to the healthy structure. In the context of
the present work, these recordings are being produced numerically. Due to reflections from the boundaries the
scattered field is complex and has multiple arrival time peaks. As a result, the quality of the image is degraded.
Our objective is to investigate the influence of the boundaries and the total time of the experiment on the produced
image.

2 SOURCE LOCALIZATION

In the present section we investigate the problem of localizing a source in an 1D bounded domain Ω with the aid
of one receiver that records the response at a point xr. The source, excites one unknown point xs (point source)
according to a given excitation function f(t) which is a pulse emitted at a known time t0 (usually it is assumed that
t0 = 0). Acoustic waves travel along the domain, reflect on the boundaries and the response p(xr, t;xs) is being
recorded at the location of the receiver for a specified total time T .

The wave propagation process, that may be performed physically, is expressed by the following initial-boundary



value problem,

1

c2
∂2p

∂t2
− ∂2p

∂x2
= f(t)δ(x− xs), (x, t) ∈ Ω× (0, T ],

p(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

p(x, 0) = 0 and
∂p

∂t
(x, 0) = 0, x ∈ Ω, (1)

which we solve numerically using a finite element method and we obtain the field p(xr, t) at the location xr of
the receiver for t ∈ (0, T ]. In Eq. (1), p is the displacement, c is the wave velocity assumed to be constant and
δ(x−xs) is a delta function expressing the spatial distribution of the impulsive excitation. In the present work, we
use a Ricker wavelet with central frequency f0 as the excitation function f(t),

f(t) =
[
1− 2π2f2

0 (t− t0)2
]
e−π

2f2
0 (t−t0)2 . (2)

Additionally, instead of the delta function δ(x − xs), in the numerical computations we use a spatial distribution
of the source g(x− xs),

g(x− xs) =


[

1−|x−xs|2
r20

]3
, for |x− xs| ≤ r0,

0, for |x− xs| > r0,
(3)

where λ0 is the central wavelength and r0 =
λ0

5
.

2.1 Time domain solution - TR

The principal idea in TR is to back-propagate the recorded signals reversed in time so as to achieve refocusing at
the region of the source. For that purpose, the recorded signal p(xr, t) is time reversed and re-transmitted from
xr. These time reversed waves, back-propagate through the medium and refocus on the position xs of the source
at a certain time tRF = T − t0, where t0 is the moment when the initial pulse was emitted from the source. The
backward propagation step is expressed in terms of the acoustic field pTR(x, t;xr) by the initial-boundary value
problem

1

c2
∂2pTR

∂t2
− ∂2pTR

∂x2
= p(xr, T − t;xs)δ(x− xr), (x, t) ∈ Ω× (0, T ],

pTR(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

pTR(x, 0) = 0 and
∂pTR

∂t
(x, 0) = 0, x ∈ Ω, (4)

which is numerically solved using the same finite element method. It is expected that pTR(x, T−t0;xr) for x ∈ Ω,
will depict the location of the source.

2.2 Frequency domain solution - Imaging

In the present subsection, we solve the initial-boundary value problem in Eq. (4), i.e., the backward propagation
step, in the frequency domain. For that purpose we express both the data at the receiver p(xr, t;xs) and the solution
of the backward problem pTR(x, t;xr) with the aid of the Green’s functions of the wave equation in the bounded
domain Ω, G(xs, xr, t) and G(xr, x, t) respectively as (see [2, 1])

p(xr, t) = f(t) ?t G(xs, xr, t) (5)

pTR(x, t) = F (xr, t) ?t G(xr, x, t) (6)

where ?t denotes Riemann convolution in time and F (xr, t) = p(xr, T − t) is the time reversed recorded signal.
Eq. (5), is a model for the calculation of the data at the receiver. In practice we intent to measure the data physically
or simulate it numerically and thus we do not need such a model but we write it for plenitude. Since it is easier to
deal with convolutions in the frequency domain [1], we use the Fourier transform and the convolution theorem [4]
to write the data at the receiver as

p̂(xr, ω) =

∞∫
−∞

f(t) ?t G(xs, xr, t)e
iωtdt = f̂(ω)Ĝ(xs, xr, ω) (7)



and the time reversed data in the frequency domain F̂ (xr, ω) as

F̂ (xr, ω) =

∞∫
−∞

p(xr, T − t)eiωtdt = p̂(xr, ω)eiωT = f̂(ω)Ĝ(xs, xr, ω)eiωT (8)

where Ĝ(xs, x, ω) is the Green’s function of the Helmholtz equation in Ω and the overbar denotes complex conju-
gation. Additionally, the acoustic response during the backward step for x ∈ Ω is

pTR(x, t) =
1

2π

∞∫
−∞

F̂ (xr, ω)Ĝ(xr, x, ω)e−iωtdω =
1

2π

∞∫
−∞

p̂(xr, ω)Ĝ(xr, x, ω)eiω(T−t)dω (9)

It is expected that a refocusing at the region of the source will take place at time t = tRF = T − t0 and we thus
define the imaging functional

I(x) = pTR(x, t = T−t0) =
1

2π

∞∫
−∞

p̂(xr, ω)Ĝ(xr, x, ω)eiωt0dω =
1

2π

∞∫
−∞

f̂(ω)Ĝ(xs, xr, ω)Ĝ(xr, x, ω)eiωt0dω

(10)
and its numerical approximation by the midpoint rule assuming sufficiently small ∆ω’s

I(x) =
1

2π

∑
i

p̂(xr, ωi)Ĝ
h(xr, x, ωi)∆ωi (11)

The quantity Ĝh(ξ, x, ω) is an approximation of the term Ĝ(ξ, x, ω)eiωt0 , where ξ is a fixed point. It is the Fourier
transform of Gh(ξ, x, t), which is the numerically calculated response at x due to pulse emitted from ξ at time t0.

2.3 Modal expansion

In order to investigate the behavior of the time reversal approach as well as the influence of the boundaries in the
source localization process, we will utilize the eigenfunction (modal) expansion of the Green’s function. For that
purpose we make use of the expression in Eq. (7) for the data at the receiver and the approximation Ĝh of the
Green’s function, to write the imaging functional as

I(x) =
1

2π

∑
ω

∣∣∣f̂(ω)
∣∣∣2 Ĝ(xs, xr, ω)Ĝ(xr, x, ω). (12)

According to [5] the modal expansion formula for the Green’s function of the Helmholtz equation in an 1D bounded
domain is given by

Gmodal(x, ξ, ω) =

N∑
n=1

1
ω2

c2 − λn
Φn(x)Φn(ξ), (13)

where the λn’s and the Φn’s are the eigenvalues and the eigenfunctions of the Laplace operator [5] respectively,
while N is the total number of used eigenfunctions (modes). After plugging Eq. (13) into (12), neglecting the
f̂(ω), and performing the calculations, we obtain

Ĩ(x) = C0

3∑
i=1

[
Fi

N∑
n=1

sin
(nπx
L

)
sin

(
nπAi
L

)]
(14)

i Fi Ai
1 1.0 xs
2 0.5 xs + 2xr
3 0.5 xs − 2xr

Table 1: Scale factors Fi and arguments Ai.

where the scale factors Fi and the arguments Ai are given in Table 1 while C0 is a constant that does not affect the
image and can be omitted.



In order to obtain Eq. (14), careful attention should be taken for the frequency discretization to avoid resonances.
For that purpose, the discrete ωi’s are chosen so that |ω2

2i−1− c2λi| = |ω2
2i− c2λi| = constant for all i’s, as shown

in Figure 1.

Figure 1: Discrete values ωi’s.

Finite series of products of two sines like the ones appearing in Eq. (14), have been investigated algebraically
and numerically. It has been proved, that if the argument of the one sine is ny (y is the dependent variable) and
the argument of the other sine is nα (α is an arbitrary constant value 6= kπ, k ∈ N), the aforementioned series
exhibits exactly one peak within the interval (0, π). This can be indicatively seen in Figure 2a where the quantity
Psin(y, α) =

∑N
n=0 sin(ny) sin(nα) is plotted for α = π

6 .

(a) Psin(y, α) =
∑N
n=0 sin(ny) sin(nα), α = π

6
(b) Pcos(y, α) =

∑N
n=0 cos(ny) cos(nα), α = π

6

Figure 2: Plots of Psin and Pcos with N = 100.

Comparing the arguments of Psin and of the series in Eq. (14), it can be seen that the latter exhibits exactly one
peak in Ω = [0, L]. Additionally, it has been proved that the limit of such a series as x approaches Ai, takes the
constant value of N+1

2 , given that the Ai is sufficiently far from any value kL, where k ∈ N. These observations
imply that the image for the source localization, contains one peak at the location of the source and another two,
half-sized peaks. These smaller peaks, decrease the quality of the image and they are usually referred to as ghosts.
They are caused by reflections on the boundaries of the domain and their locations depend on the positions of the
source xs and the receiver xr (i.e., the arguments Ai).

It can be observed, that the ratio between the height of the main peak which indicates the location of the source,
and the maximum height of the ghost peaks, is 2.0. This ratio is referred to as Signal to Noise Ratio (SNR) and
it is a measure of the quality of the image. One way to increase SNR in the present problem, is to increase the
number of receivers. Due to the linearity of the imaging functional in Eq. (11), an image created by the recordings
at Nr receivers, is equal to the superposition of the images for each one of the receivers alone. Making use of that
property we can write

I(x) =
∑
ω

Nr∑
r=1

p̂(xr, ω)Ĝh(xr, x, ω). (15)

It can be observed, that the SNR is linear with respect to the number of receivers and in this case it becomes 2Nr.

3 DEFECT LOCALIZATION

In the previous section we presented the application of time reversal and imaging techniques for the localization of
a source in an 1D bounded domain. In the present section we will extend this process in order to locate scatterers
such as small defects. In this case, apart from the source (at xs) and the receiver (at xr), the 1D domain Ω contains a
small defect centered at xd. The impulse emitted by the source, propagates, reflects on the boundaries and interacts
with the defect (every time a wave reaches the defect it splits in a transmitted and a reflected component) while the
receiver records the field ptot(xr, t) at xr for a certain time T .



We assume in this case that we also know the incident field, pinc(x, t), which is the field in the healthy domain,
i.e., the domain without the defect. It is possible then to compute the scattered field pscat = ptot − pinc.

The fields at the receiver pinc(xr, t) and ptot(xr, t) may be measured physically, but in the present work we
compute them numerically. Solving the initial-boundary value problem in Eq. (1) with a constant wave velocity
c = cref results to pinc while ptot is obtained by solving the same problem but with the non-constant wave velocity
field c(x). If Ωd ⊂ Ω is the small damaged area, then c(x) = cd 6= cref for x ∈ Ωd and c(x) = cref otherwise.

It should be noted here that the scattered field pscat of the defected domain, exhibits a major difference compared
to the recorded field p(x, t;xs) in the source localization problem of the previous section. The latter, contains only
one pulse that propagates along the domain, reflects on a boundary and travels back towards the other boundary.
This situation is the same independently from the total experiment time T . In the case of the defect however, the
initial pulse, during its first passage from the defect, it splits into two pulses. One that passes by and another one
that reflects back. These two pulses, reflect on the corresponding boundaries and each one splits into another two
pulses when they pass over the defect. Conclusively, the defect acts as a multiple in time source and pscat becomes
more complicated as the total time T increases.

3.1 Time domain solution - TR

For the defect localization we apply TR numerically, equivalently to the case of the source, with the difference that
it is the scattered field pscat that is time reversed and re-transmitted from xr. More specifically we solve the initial-
boundary value problem in Eq. (4) with pscat(xr, T − t;xs) instead of p(xr, T − t;xs). The back-propagation of
pscat, is proved to provide better refocusing compared to the total field ptot.

It should be noted, that due to the multiple emissions from the defect, there is not only one refocusing time,
unlike the case of the source localization. It has been observed though, that the strongest refocusing is the one
that corresponds to the original pulse, i.e., the first wavefront recorded. As a result, the refocusing time is tRF =

T − t1− t0, where t0 is the time that the source emitted the original pulse and t1 = |xs−xd|
cref

is the travel time from
the source to the defect. Conclusively, p(x, T − t1 − t0) for x ∈ Ω, will depict the location of the defect.

3.2 Frequency domain solution - Imaging

Equivalently to the source localization process, in the present subsection we perform the backward step of the
defect localization problem in the frequency domain. For that purpose we assume a model for our data, i.e., the
scattered field at the receiver, that is known as the Born approximation [3] and is given by

p̂scat(xr, ω) = k2f̂(ω)

∫
Ωd

Ĝ(xs, x, ω)Ĝ(x, xr, ω)ρ(x)dx, (16)

where k =
ω

cref
is the wavenumber and ρ(x) the reflectivity of the defect defined as ρ =

c2ref − c2d
c2d

for our

example. For a point reflector located at xd and with reflectivity ρ we get

p̂scat(xr, ω) = k2f̂(ω)ρ Ĝ(xs, xd, ω)Ĝ(xd, xr, ω). (17)

According to [2] and based on this data model, it seems natural to define an imaging functional as

I(x) =
∑
ω

p̂scat(xr, ω)Ĝh(xr, x, ω)Ĝh(x, xs, ω). (18)

It can be observed that in this approach, the reversed in time scattered field pscat is back-propagated in two sub-
steps. First, from the receiver xr to a point x of the domain and second, from x to the source xs. It might seem that
the second sub-step (from x to xs) is redundant because it is the location of the defect that we are interested in,
not the source. In fact, this sub-step is necessary, since to get a large contribution at the location of the defect we
need to also account for the propagation from the source to the defect as suggested by the data model (Eq. (16)).
Conclusively, Eq. (18) shows the appropriate imaging functional, equivalent to Eq. (11) but with the two Green’s
functions G(xr, x, ω) and G(x, xs, ω). The appearance of these two Green’s functions, differentiates imaging
(in the frequency domain) from TR as described in Sec. 3.1, and for that reason the two approaches are not the
same any more. It should be noted that this difference between the two approaches does not appear in the source
localization.



3.3 Modal expansion

Equivalently to the source localization process, we will utilize the modal expansion of the Green’s functions to
achieve a deeper understanding of imaging for defect localization. Substituting, Ĝh and p̂scat into Eq. (18), we
obtain

I(x) =
∑
ω

k2ρ
(
f̂h(ω)

)2

f̂(ω)Ĝ(xs, xd, ω)Ĝ(xd, xr, ω)Ĝ(xr, x, ω)Ĝ(x, xs, ω), (19)

where f̂h(ω) is the Fourier transform of the excitation function used to calculate Ĝh. In general f̂h(ω) may be
different from f̂(ω) which is the excitation function of the forward problem.

Plugging the modal expansion formula in Eq. (13) into Eq. (19) and performing the calculations, we obtain the
sum of series shown in Eq. (20).

Ĩ(x) = C1

{
13∑
i=1

[
Fi

N∑
n=1

cos

(
2nπx

L

)
cos

(
2nπAi
L

)]
+

N∑
n=1

cos
(nπx
L

)}
+ C2, (20)

where the scale factors Fi and the arguments Ai are given in Table 2 while C1 and C2 are constants that do not
affect the image and can be omitted. Similarly to Sec. 2.3 we have neglected f̂(ω).

i Fi Ai i Fi Ai i Fi Ai i Fi Ai
1 1.0 xd 4 0.5 xd − xs 7 0.5 xd + xr 10 0.25 xd − xs − xr
2 1.0 xs 5 0.5 xd + xs 8 0.5 xs − xr 11 0.25 xd − xs + xr
3 1.0 xr 6 0.5 xd − xr 9 0.5 xs + xr 12 0.25 xd + xs − xr

13 0.25 xd + xs + xr

Table 2: Scale factors Fi and arguments Ai of the image for defect localization.

The image in Eq. (20), is practically a sum of thirteen series each of which is a sum of products of two cosines.
Such series have been investigated algebraically and numerically. It has been proved that if the argument of the
one cosine is ny (y is the dependent variable) and the argument of the other cosine is nα (α is an arbitrary constant
value 6= kπ + π

2 , k ∈ N), the aforementioned series exhibit exactly two peaks within the interval (0, 2π) which
are symmetrical with respect to the middle of the interval, π. This can be indicatively seen in Figure 2b where the
quantity Pcos(y, α) =

∑N
n=0 cos(ny) cos(nα) is plotted for α = π

6 .

Comparing the arguments of Pcos and of the series in Eq. (20), it can be seen that the latter exhibits exactly two
peaks in Ω = [0, L] which are symmetrical with respect to L

2 . Additionally, it has been proved that the limit of
such a series as x approaches Ai, takes the constant value of N+1

2 , given that the Ai is sufficiently far from any
value kL, where k ∈ N.

Conclusively, we expect a symmetric image that contains 2 ∗ 13 = 26 peaks one of which should depict the defect.
This is, one of the two symmetrical peaks that correspond to the argument Ai = xd. The SNR of the image is 1.0,
because the amplitude of the main peak that depicts the defect is the same with the amplitude of another 5 peaks
which can be regarded as noise. The increase of the SNR is not possible, because in this approach the symmetry of
the image can not be avoided. There will always be an equal peak at the defect and its symmetrical and we can not
choose which one indicates the true defect location. We may though increase the quality of the image by increasing
the number of receivers and sources. Due to the linearity of the imaging functional in Eq. (18), an image created
by the recordings at Nr receivers due to Ns emitting sources, is equal to the superposition of the images for each
one of the receivers and sources alone. Making use of that property we can write

I(x) =
∑
ω

Nr∑
r=1

Ns∑
s=1

p̂scat(xr, ω)Ĝh(xr, x, ω)Ĝh(x, xs, ω). (21)

In this way, each summand over the Nr receivers, will add a peak of a specific height at the location of the defect
and another peak of the same height at the location of each receiver. As a result, the peak at the defect is amplified
but not the other peaks because they are at different locations. The same holds for the sum over the sources,
improving the quality of the image.



3.4 Total experiment time T

In TR for defect localization (Sec. 3.1) the choice of the total experiment time T is of significant importance. If T is
multiple of L

cref
, i.e., the wave travels many times along the length L, then pscat is too complicated and the quality

of the image degrades. Accordingly, the total time T that provides the best results is T = |xs−xd|
cref

+ |xd−xr|
cref

+ 2t0,
because this is the time where only the first wavefront is recoded. Due to the fact that xd is not a priori known, a
total time of T = 2L

cref
+ 2t0 is the optimum choice. This is because it is sufficiently large for the pulse to travel

from xs to xd and then to xr, independently from the defect location and at the same time it is relatively small in
order to achieve a good image quality.

In imaging (Sec. 3.2), the role of the total time T is similar to the TR case. This is because the terms in Eq. (18)
are being calculated in the time domain and subsequently Fourier transformed. In modal expansion however, it is
assumed that the total time is infinite. As a result, the two approaches are comparable, only if a sufficiently large
T (→∞) has been used for the calculation of the terms in Eq. (18).

4 NUMERICAL EXAMPLES

In the present section we present numerical results of TR and of the imagining techniques implemented on an
1D bounded domain of total length L = 30 length units. The edges of the domain are subjected to the Dirichlet
boundary conditions p(0, t) = p(L, t) = 0 for both initial-boundary value problems Eqs. (1) and (4).

4.1 Source localization

Regarding the source localization problem, the three approaches, TR, imaging and imaging based on modal expan-
sion have no fundamental difference and their results can be compared to each other. This is illustrated in Figure 3
where images calculated using the three approaches for a source at 0.95L and a receiver at 0.8L are plotted. The
three lines agree almost perfectly.

Figure 3: Comparison between TR, imaging and imaging based on modal expansion for a source at 0.95L and a
receiver at 0.8L. There is very good agreement between the three methods.

The influence of the positions of the receiver and the source on the location of the ghost peaks, can be intuitively
visualized in Figures 4a and 4b respectively. In Figure 4a, imaging results are shown for a source at the fixed
position xs = 0.4L and for different receiver locations. Figure 4b, shows imaging results as well but the receiver
lies on the fixed position xr = 0.6L while the source is at different locations.

(a) One source at xs = 0.4L and different xr’s. (b) One receiver at xr = 0.6L and different xs’s.

Figure 4: Influence of the locations of the source and the receiver in imaging for source localization.



Figure 5: Multiple receivers

Observe in Figure 4a that for xr = 0.3L and 0.7L there
is only one ghost. This can be explained by Eq. (14). For
xr = 0.3L, the argument xs+2xr equals 1.0L and there-
fore the corresponding sine and consequently the series
that produces one of the two ghosts vanishes. Equiva-
lently for xr = 0.7L it holds xs− 2xr = −1.0L. For the
same reason if we have a source at 0.5L and a receiver at
0.25L, we obtain an image without any ghost.

Figure 5, shows the improvement of the quality of the
image for increasing number of receivers. More specifically, there is one source at a fixed location and one receiver
is added at a random location in each sub-figure. It can be observed that the SNR is gradually increasing from 2.0
for one receiver to 10.0 for five receivers.

4.2 Defect localization

In the defect localization problem, TR exhibits significant differences (see Sec. 3.4) compared to the two imaging
techniques and for that reason its results are being demonstrated separately.

(a) 1st TR example, xs, xr, xd = 0.84L, 0.11L, 0.73L. (b) 2nd TR example, xs, xr, xd = 0.25L, 0.11L, 0.84L.

Figure 6: TR examples

Figure 6, shows TR results for two examples with increasing total experiment time. More specifically, in the first
example there is a source at xs = 0.84L, a receiver at xr = 0.11L and the defect at xd = 0.73L and in the second,
xs = 0.25L xr = 0.11L and xd = 0.84L. These images depict the backward propagating field at the refocusing
time tRF = T − |xs−xd|

cref
− t0.

In the 1st example (Figure 6a) for a total time of T = 0.8 Lc0 , the image exhibits a SNR of about 1.0, because
there is one peak at the defect location and another one ghost peak of the same height that reduces the quality of
the image. The total time T = 0.8 Lc0 corresponds to the time for which we expect the optimum image quality,

i.e., approximately T = |xs−xd|
cref

+ |xd−xr|
cref

+ 2t0 as explained in Sec. 3.4, where c0 = cref . It is interestingly

observed though, that for T = 1.0 Lc0 the quality of the image is higher with a SNR of about 2.0. This is because
in the latter case, apart from the first wavefront emitted by the defect, the receiver has recorded its reflection to the
nearest boundary as well. This reflection has created a second ghost peak on the one hand, but it has amplified the
main peak of the defect on the other, leading to the SNR of 2.0. The same exactly observation can be made in the
2nd TR example (Figure 6b) for T = 1.5 Lc0 . In both the TR examples, when increasing the total time T the quality
of the image gradually reduces until it is stabilized to a SNR of about 1.0.

Figure 7: 1st Imaging example, xs, xr, xd = 0.95L, 0.12L, 0.67L.



As mentioned in Sec. 3.4, imaging and TR are different approaches that can not be compared to each other.
Additionally, imaging and modal expansion based imaging may be compared only if the total time for imaging
approaches infinity. Accordingly, Figs. 7 and 8 show imaging for a total time of T = 100 Lc0 and modal expansion
based imaging using 160 modes for two examples. In the first example (Figure 7) the source is located at xs =
0.95L, the receiver at xr = 0.12L and the defect at xd = 0.67L while in the second example (Figure 8) xs =
0.29L, the receiver at xr = 0.23L and the defect at xd = 0.87L. The two approaches are very close to each other.

Figure 8: 2nd Imaging example, xs, xr, xd = 0.29L, 0.23L, 0.87L.

The symmetry of the image with respect to the middle of the domain is present as expected. Moreover, there are six
high peaks (three for the source the receiver and the defect and their symmetrical) of maximum height that lead to
a SNR ratio of 1.0. The fact that the 13 peaks shown in Table 2 and their symmetrical are not clearly distinguished,
is attributed to their large width, making them to mix up or to cancel out between each other.

It has been shown in equation (21), that the increase of the receivers and the sources improves the quality of the
image. This is illustrated in Figure 9, where one receiver and one source are being alternately added at a random
location in each sub-figure. The total number of receiversNr and sourcesNs is shown at the bottom of each image.
Figure 9 clearly shows the gradual improvement of the quality of the image for increasing number of receivers and

Figure 9: Imaging example with a defect at xd = 0.67L and increasing Nr and Ns.

sources. In the final image, where Nr = Ns = 5, there are only two discrete peaks, one that indicates the true
defect location and its symmetrical with respect to the middle of the image which has the same amplitude. This
second peak is a ghost peak and is regarded as noise resulting to a SNR equal to 1.0, i.e., despite the obvious
improvement of the image quality, the SNR does not improve. The only way to increase the SNR in imaging for
defect localization is to reduce the total experiment time. This reduction can not be applied to the modal based
imaging technique because in this case it is assumed that the total time is infinite. Figure 10 shows images for
increasing total time T . It is obvious, that for short total times, there is only one clear peak indicating the true

Figure 10: Imaging example with a defect at xd = 0.67L and increasing total time T .



defect location. In the first sub-figure, for T = 0.5 Lc0 the SNR is about 4.0 and it gradually decreases until a value
of 1.0 for T = 10.0 Lc0 .

4.3 2D Example

Despite the fact that the extension of the imaging technique described in Sec. 3.2 in two dimensional problems, is
beyond the scope of the present work, we demonstrate some results indicatively. The defect localization problem
is solved in a 2D bounded square domain Ω of edge length L subjected to the Dirichlet boundary conditions
p(x, t) = 0, x ∈ ∂Ω. The domain contains one square shaped defect of width 0.01L centered at (0.80L, 0.45L), as
well as, 20 sources and 20 receivers which are collocated and their locations have been randomly selected. Figure

(a) T = 10
√
2L
c0

(b) T = 4
√
2L
c0

(c) T = 2
√
2L
c0

Figure 11: 2D Imaging example, one defect at (0.80L, 0.45L), 20 receivers and 20 sources which are collocated.

11 shows the image for three different total experiment times. The total times used are multiples of the time that
the wave needs to travel a distance equal to the diagonal of the 2D domain. It can be observed that for increasing
total time, the quality of the image decreases. Additionally, it is obvious that 2D imaging produces significantly
less noisy results compared to 1D imaging. This is mainly attributed to the fact that in 1D imaging the defect
separates the domain in two different sub-domains, which does not hold in 2D imaging. As a result, the influence
of the defect to the wave propagation process, is significantly higher in the 1D case. Moreover, the usage of a large
number of sources and receivers, improves the SNR and accordingly the quality of the image.

5 CONCLUSIONS

In the present paper we presented a methodology for localizing small defects in 1D bounded domains based on
recordings at a limited number of spatial points. The similarities and the disparities between the source and the
defect localization problems have been appropriately exploited for the achievement of solutions to the second.
Additionally, the noise developed by reflections on the boundaries, has been extensively analyzed and approaches
for the improvement of the quality of the image have been proposed. Finally, results of a defect localization
problem in a 2D bounded domain are being indicatively demonstrated and proved to be very promising.
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