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Abstract

We consider the problem of localizing small material defects in rectangular

bounded domains. The scalar acoustic equation is used to model wave propa-

gation in this context. Our data is the scattered field collected at one or more

receivers and due to impulsive excitations at one or more source positions. To

localize the defect we use an imaging method that consists in back-propagating

the recorded field in the domain of interest. The back-propagation is performed

numerically using a model for the Green’s function in the bounded medium. For

the source localization problem this imaging technique is equivalent to compu-

tational Time Reversal (TR). We study in this paper the quality of imaging in

terms of the Signal to Noise Ratio (SNR) both for the source and the defect

localization problems. Our theoretical analysis carried out for the simpler one-

dimensional case allows us to correctly predict the performance of the method.

Our results indicate that for the source localization problem the SNR increases

linearly with the number of receivers while for the defect localization its maxi-

mal value is 2 and can only be attained by decreasing the time of the experiment

so as to minimize the boundary effects.
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1. Introduction

In this paper we consider the problem of imaging a material defect in a

bounded domain. Assuming that the defect is small with respect to the wave-

length of the probing pulse we model the defect as a point like scatterer. The

imaging problem can be generally described as follows: Assume that a source,5

at a known location within the bounded medium, emits a pulse. The properties

of the medium are known everywhere except from the localized area of the de-

fect. Then imaging consists in identifying the location of the defect given partial

information about the generated wave field. This is, recordings measured at a

limited number of positions (sensors) sampled at a constant rate.10

The aforementioned, is an inverse wave problem that may be formulated as

an optimization problem. More specifically, assuming the source is fully known

(location and excitation function), one seeks to determine the scatterer location

as the minimizer of the misfit between the actual recordings and numerically

generated data at the sensors corresponding to different scatterer locations. In15

[1], this problem was addressed using a genetic optimization algorithm, while

in [2, 3] the adjoint method was proposed as a way to calculate the gradient

efficiently.

A different approach to the scatterer localization problem is the Time-

Reversal (TR) technique which was initially developed as a physical process20

by Mathias Fink et al. [4] so as to focus the scattered field measured on an

array of receivers to the location of the scatterer that generated this field. TR

has been also adopted by many authors (such as [5, 6, 7, 8]) as a computa-

tional tool for solving a class of inverse wave propagation problems. For the

source localization problem, TR consists of the following two steps. First, in25

the forward step a source emits a pulse at time t0 and the generated wave-field

is recorded on an array of receivers for a long enough time window t ∈ [0, T ]. In
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a second step, the recordings at the receivers are time-reversed and re-emitted

in the same medium. This physical process generates a wave-field that will be

focused at the location of the source at time T − t0. This refocusing property30

of TR, comes from the fact that in non-dissipative media, linear wave equations

are symmetric in time and thus time reversible. This is because if no dissipation

is considered, the wave equations contain only time derivatives of even order,

so they are invariant under the transformation t→ −t. The refocusing around

the original source location can be observed experimentally by measuring the35

acoustic pressure field around the original source location [9]. The quality of the

refocusing depends on the wavelength, the bandwidth, the distance between the

array and the source and the aperture of the receiving array usually referred to

as time-reversal mirror [4]. When the second step of TR is performed numeri-

cally by back-propagating the recordings of the forward step in a model of the40

propagation medium we refer to it as computational time-reversal.

Computational TR has been recognized in recent years, because of its ro-

bustness and simplicity, as a quite appealing approach for solving two general

classes of inverse problems and accordingly finds different applications to nu-

merous disciplines. The first general class is the source localization problem,45

considered e.g. in seismology for epicenter localization, while the second is the

scatterer localization problem that has been used e.g. for the localization of

subsurface objects [10, 11] in geosciences or damaged areas within structures

[12, 13] in Structural Health Monitoring (SHM). In this paper, we reserve the

abbreviation TR to indicate computational Time-Reversal.50

The main advantage of TR over the direct solution of the optimization

problem, discussed earlier, is that the formulated inverse problem is quite well-

behaved [14]. In addition to that, TR is robust to noise in the measurements.

In fact, according to [15], the addition of artificial noise in the measurements

may be beneficial in some cases because it eliminates spurious solutions. Ambi-55

ent noise measurements may be used as the primary recordings that are being

time reversed, as in [16], but this is a slightly different problem than the one

considered in this paper. Other types of difficulties that have been successfully
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treated by TR, include but are not limited to, media with random proper-

ties [17], multiple scattering in granular media [18], non-linear problems [19],60

multiple scatterer localization [20] and damping [21, 22, 23]. Consideration of

damping is a critical issue in TR because it breaks the non-dissipation condition,

necessary for time-reversibility of the wave equation. In some cases however e.g.

small homogeneous damping, attenuation affects the solution in a degree that

still allows localization with TR.65

Another important aspect in the application of TR methods, is whether the

domain is bounded or not. The presence of boundaries results to multiple re-

flections of the initially emitted pulse, a process that significantly increases the

information content of the received signal. This extra information can clearly

be beneficial in source localization problems [14, 24], since it is equivalent to in-70

creasing the aperture size. In scatterer localization however, where the scatterer

acts as a secondary source that emits pulses every time a wavefront impinges on

it (see Sec. 3.1), it is not straightforward how multiple reflections influence refo-

cusing using TR. This is one of the main motivating questions that the present

paper intends to address.75

For that purpose, we follow the approach in [25] and introduce an Imaging

Method (IM) that reproduces the Time-Reversal process but in the frequency

domain. Imaging is performed by backpropagating the data using the Green’s

function of the Helmholtz equation in the bounded domain. This imaging

method denoted IM hereafter is referred to as Kirchhoff migration in seismic80

imaging [26]. It should be noted that the recorded data are the same as in

TR but Fourier transformed since we perform the calculations in the frequency

domain. For the source localization problem, and assuming we know the propa-

gation medium, the two approaches (IM and TR) are identical while this is not

the case for the defect (scatterer) localization problem as explained in sections85

4.1 and 4.2. Imaging with IM may be suitable in several applications where the

Green’s function is known or can be obtained numerically or experimentally.

In imaging, a spatial domain of interest is considered, an imaging window

(IW), and then the imaging functional is evaluated at all points of the IW. We
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call passive the imaging modality that using receivers seeks to localize a source90

while we refer to active imaging when emitters and receivers are used for the

localization of a defect. A good imaging function should have a big value, that

is a peak, at the location of the source (defect) and decay fast away from it.

The size of the focal spot obtained at the source (defect) location determines the

resolution of the imaging method. Another important quantity is the Signal to95

Noise Ratio (SNR) defined as the value of the image at the true source (defect)

location divided by the noise defined here as the maximal value of the image

outside a region around the true source (defect) location.

When imaging with IM is considered in bounded domains, we observe in

the image the appearance of peaks at other locations besides the true location100

of the source (defect). Using the modal representation of the Green’s function

for a model one-dimensional problem, we compute an analytical expression for

the imaging functional which allows us to evaluate the location and the value

of these peaks and consequently the SNR of the image. Moreover, we show

that the SNR is linearly increasing with the number of receivers. Our analytical105

SNR estimates are validated with detailed numerical simulations in one and two

spatial dimensions.

The paper is organized as follows. In Sec. 2 we describe the process of

generating the data at the receivers for both source and defect localization

problems. The same recordings are used in both TR and IM approaches. In110

Sec. 3 we demonstrate the computational Time-Reversal technique (TR) and

discuss practical and theoretical considerations for the defect localization and

the estimation of the refocusing time. In Sec. 4, the imaging method (IM) is

being investigated and we show how the imaging functional is constructed for

the source and defect localization problems. In addition to that, for the two115

types of problems considered, we theoretically investigate the effectiveness and

performance of IM in one dimension, by utilizing the eigenfunction (modal) ex-

pansion of the Green’s function. Note that throughout this paper, we considered

that the medium is acoustic. It has been shown however, e.g. in [6, 20], that the

theory of TR can be directly extended to elastodynamics. In Sec. 5 we present120
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our numerical results. First, we show a detailed comparison between IM, TR

and theoretical results for the source localization problem and present 2D local-

ization results in rectangular domains. The defect localization problem is then

considered first in 1D where we compare the results between theory and IM.

Finally we present 2D solutions in rectangular domains, where both array and125

distributed sensor configurations are considered, and assess the performance of

IM in terms of SNR.

2. Data acquisition: The forward step

In the present work, we numerically generate the data recorded at the re-

ceivers. We simulate the physical wave propagation process by solving the linear130

wave equation using the Finite Element Method (FEM) and an explicit time

integration scheme. The time histories of the response at the locations of the

receivers are saved and substitute the recordings of the corresponding physical

process.

A source excites one point xs (point source) of the bounded domain Ω135

according to a given excitation function f(t). Waves travel trough Ω, reflect on

the boundaries while the response at the locations of the receivers p(xr, t; xs) is

being saved (recorded) for t ∈ [0, T ] for a specified total time T . In an acoustic

bounded medium with homogeneous Dirichlet boundary conditions on ∂Ω, and

constant density %, this process is described by the following initial-boundary140

value problem

1

c(x)2
∂2p

∂t2
−∆p = f(t)δ(x− xs), (x, t) ∈ Ω× (0, T ],

p(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (1)

p(x, 0) = 0 and
∂p

∂t
(x, 0) = 0, x ∈ Ω,

where p is the displacement, δ(x − xs) is a delta function expressing the

spatial distribution of the excitation and c(x) is the wave propagation velocity,

c2(x) = κ(x)/% with κ(x) the bulk modulus of the propagation medium which
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can be inhomogeneous. In the source localization problem, the wave velocity is145

assumed to be constant c(x) = cref throughout Ω. In the case where the domain

contains a small damaged area Ωd ⊂ Ω, there is a local alternation in the wave

velocity, i.e. c(x) = cd for x ∈ Ωd and c(x) = cref otherwise.

2.1. Numerical implementation of the forward step

For the solution of the wave propagation problem in an acoustic medium,150

we utilize appropriate finite element methods. The IBVP in Eq. (1) is solved

based on the discretization of the mixed velocity-pressure formulation of the

problem according to the method described in [27]. For the time discretization

a 2nd order accurate, explicit leap-frog scheme is used.

We use as excitation function f(t), a Ricker wavelet at a central frequency155

f0 given by,

f(t) =
[
1− 2π2f20 (t− t0)2

]
e−π

2f2
0 (t−t0)

2

. (2)

This impulsive excitation is applied at the location of the source by introduc-

ing a right hand side loading term containing a Dirac delta function as shown in

Eq. (1). The delta function expresses the spatial distribution of the excitation

around the source and its numerical computation is performed with the aid of160

the following approximation

g(x− xs) =


[
1−|x−xs|2

r20

]3
, for |x− xs| ≤ r0,

0, for |x− xs| > r0,

(3)

where λ0 is the central wavelength, r0 = λ0

5 and the absolute value |.| denotes

Cartesian distance.

3. Time-Reversal: The backward step

In possible applications of the TR technique for detection and localization of165

damage (or source), it is reasonable to assume that the backward step is always

performed numerically. The time histories recorded at the locations of the
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receivers xir, i = 1, ..., Nr are time reversed and retransmitted into the medium

from the same locations. This process can be found in several alternative forms

such as in [9] where it is stated that one may force either just the field variable170

or the field variable and its first derivative recorded in the forward process. In

[6], and some references therein, the wave is retransmitted through appropriate

initial conditions. Finally, one can follow the approach used in [7] or [28] for

acoustic media. The displacement field during the backward step p̃ satisfies the

following IBVP,175

1

c2ref

∂2p̃

∂t2
−∆p̃ =

Nr∑
i=1

δ(x− xir)p(xir, T − t), (x, t) ∈ Ω× (0, T ],

p̃(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ], (4)

p̃(x, 0) = 0 and
∂p̃

∂t
(x, 0) = 0, x ∈ Ω.

In the source localization problem, waves back-propagate through the medium

and refocus at the position of the source xs. This refocusing takes place at a

time tRF = T − t0, where t0 is the time that the initial pulse was emitted by

the source in the forward step. We simulate this process by numerically solving

Eq. (4), using the same FEM as for the forward problem. Because of the time180

reversibility of the wave equation we expect the field p̃(x, T − t0) for x ∈ Ω

to be focused at the original source location [29, 6]. In the case of an array of

receivers, the size of the focal spot that we obtain at the original source loca-

tion depends on the array aperture, the distance between the receivers and the

source, the central frequency and the bandwidth of the source. A resolution185

analysis for TR and IM in homogeneous and randomly inhomogeneous media

in free space is carried out in [25].

3.1. Defect localization using TR

The solution of the defect localization problem is slightly different. In this

case, we perform the forward step twice; first on the medium containing the190
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defect, in order to construct the data at the receivers ptot(x
i
r, t) which are oth-

erwise recorded physically, and second on the healthy medium without the defect

to obtain the incident field, pinc(x
i
r, t), at the receivers. The calculation of pinc

could be obtained by performing the same measurements in the healthy struc-

ture before any damage may have occurred. As a result, we assume that it is195

possible to compute the scattered field as pscat = ptot−pinc. This is the field we

retransmit into the medium from the receivers locations during the backward

step (substitute pscat in the right hand side of Eq. (4) instead of p). It should

be noted that refocusing is achieved even if we retransmit the total field ptot

but using pscat results a better and clearer refocusing because in this way we200

minimize the influence of the original source on the recordings.

Unlike the case of source localization, there is not only one refocusing time

because the defect acts as a source every time that a wave impinges on it. It has

been observed however, that the strongest refocusing is the one resulting from

the first wavefront reflected by the defect. The corresponding refocusing time205

would be tRF = T − t1 − t0, where t0 is the time that the source emitted the

original pulse and t1 = |xs−xd|
cref

is the travel time from the source to the defect.

Therefore, we expect that the field p̃(x, T − t0− t1) will best depict the location

of the defect.

3.2. Stopping criteria for defect localization using TR210

Since the location of the defect is not known, we don’t know t1 so we can

not estimate the refocusing time. In order to compensate this difficulty one

can observe the distribution of the field variable (displacement) in the domain

Ω through the whole experiment time T . In this way the whole backward

propagation process is being well understood and the refocusing moment is215

usually obvious.

In order to automate this observation procedure, we need an absolute mea-

sure of the spatial concentration (or dispersion) of the field variable for all time

steps. The time that this measure is maximum (or minimum for dispersion), in-

dicates that the field variable exhibits high absolute values within a limited area220
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and low absolute values outside that area; it exhibits peaks. It is expected that

the global maximum in the time history of this absolute concentration measure

would correspond to the refocusing on the defect. Several such measures have

been proposed, such as the Shannon entropy and the Bounded Variation (BV)

norm which have been successfully applied in [28].225

We illustrate how the stopping criterion based on the BV norm behaves on

an example in Figure 1. We consider a source located at point (1.5, 5) (black

circle) in a bounded domain, a square of size 10. Five receivers are used located

at (1.5, 1), (1.5, 3), (1.5, 5), (1.5, 7), (1.5, 9) and shown in the figures with red X’s

and we want to identify a defect located at (7, 5) depicted with a black square.230

Note that in this experiment, the wavelength is 1m and the wave propagation

speed is 1m/sec.

(a) BV-norm (b) t ≈ 34 sec (c) t ≈ 40 sec

Figure 1: Automated estimation of the refocusing time

Utilization of the BV norm, makes it possible to estimate the refocusing time

and localize the defect. The best refocusing is for t = 40 sec which corresponds

to the expected refocusing moment. At first the BV value is approximately235

monotonic, indicating inflow of energy into the system. After some time though,

the inflow ceases and the total energy of the system remains constant. From

that moment and on, all the local minima correspond to refocusing moments.

The moment that the total energy stabilizes can be roughly assessed from Fig.

1a to be approximately 10 sec.240
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4. Imaging Method (IM)

We present in this section an imaging method for which the backward step

of the TR process is performed in the frequency domain with the aid of the

Green’s function of the Helmholtz equation in the bounded domain Ω. For the

source localization problem, and assuming we know the propagation medium,245

the two approaches (IM and TR) are identical while this is not the case for the

defect localization problem.

4.1. Source localization with IM

Our data are the same time-dependent recordings like in the TR procedure.

This is compliant with the experimental process where the data at the receivers250

are being physically measured. It is convenient to express the data by means of

the Green’s function in the background medium. Accordingly, the data at the

receiver p(xr, t) are given by

p(xr, t) = f(t) ?t G(xs,xr, t), (5)

where ?t denotes Riemann convolution in time and G(xs,xr, t) is the time

dependent Green’s function of the wave equation in the domain Ω, between255

the source located at xs and the receiver at xr. Since it is easier to deal with

convolutions in the frequency domain [8], we use the convolution theorem [30]

to write the Fourier transform of the data at the receiver as

p̂(xr, ω) =

∞∫
−∞

f(t) ?t G(xs,xr, t)e
iωtdt = f̂(ω)Ĝ(xs,xr, ω) (6)

and the time reversed data F (xr, t) = p(xr, T − t) in the frequency domain

as260

F̂ (xr, ω) =

∞∫
−∞

p(xr, T − t)eiωtdt = p̂(xr, ω)eiωT = f̂(ω)Ĝ(xs,xr, ω)eiωT (7)
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where the overbar denotes complex conjugation. Equivalently, the backward

step, i.e. the solution of the IBVP in Eq. (4), in terms of the Green’s function

in the time domain is expressed by

p̃(x, t) = F (xr, t) ?t G(xr,x, t) (8)

which becomes

p̃(x, t) =
1

2π

∞∫
−∞

F̂ (xr, ω)Ĝ(xr,x, ω)e−iωtdω

=
1

2π

∞∫
−∞

p̂(xr, ω)Ĝ(xr,x, ω)eiω(T−t)dω (9)

with the aid of the inverse Fourier transform. It is expected that a refocusing265

at the region of the source will take place at time t = tRF = T − t0 and we thus

define the imaging functional

I(x) = p̃(x, t = T − t0) =
1

2π

∞∫
−∞

p̂(xr, ω)Ĝ(xr,x, ω)eiωt0dω

=
1

2π

∞∫
−∞

f̂(ω)Ĝ(xs,xr, ω)Ĝ(xr,x, ω)eiωt0dω (10)

and its numerical approximation by the midpoint rule assuming sufficiently

small ∆ω’s

Ip(x) =
1

2π

∑
i

p̂(xr, ωi)Ĝ
h(xr,x, ωi)∆ωi. (11)

Here we use the superscript p to denote the passive imaging functional.270

The quantity Ĝh(ξ,x, ω) is an approximation of the term Ĝ(ξ,x, ω)eiωt0 . More

precisely, Ĝh(ξ,x, ω) is the Fourier transform of Gh(ξ,x, t), which is the nu-

merically computed response at x due to pulse emitted from ξ at time t0. This

means that Ĝh(ξ,x, ω) is obtained by solving the wave equation. We typically
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need to compute Ĝh(ξ,x, ω) for all points x in the domain but for a limitted275

number of ξ′s corresponding to the receivers locations. Therefore we need to

solve Nr times the wave equation so as to pre-compute and store all the Green’s

functions needed in IM. Note that when we compute Ĝh(ξ,x, ω) we do not send

a delta pulse from each receiver location but the pulse f(t). Therefore in Ip(x)

as defined by (11) it is the absolute value square of the Fourier transform of the280

pulse |f̂(ωi)|2 = f̂(ωi)f̂(ωi) that is appearing, f̂(ωi) comes from p̂(xr, ωi) and

f̂(ωi) from Ĝh(xr,x, ωi).

4.1.1. Modal expansion in 1D for imaging a source

In order to investigate the behavior of the imaging functional Ip(x) defined

by Eq. (11) as well as the influence of the boundaries in the source localization285

process, we will utilize the eigenfunction (modal) expansion of the Green’s func-

tion. For that purpose we make use of the expression in Eq. (6) for the data

at the receiver and the approximation Ĝh of the Green’s function, to write the

imaging functional as

Im,p(x) =
1

2π

∑
ω

∣∣∣f̂(ω)
∣∣∣2 Ĝ(xs, xr, ω)Ĝ(xr, x, ω). (12)

The modal expansion formula for the Green’s function of the Helmholtz290

equation in an 1D bounded domain (e.g., see in [31]) is given by

Gmodal(x, ξ, ω) =

N∑
n=1

1
ω2

c2 − λn
Φn(x)Φn(ξ), (13)

where the λn’s and the Φn’s are the eigenvalues and the eigenfunctions of

the Laplace operator [31] respectively, while N is the total number of used

eigenfunctions (modes). After plugging Eq. (13) into Eq. (12), neglecting the

f̂(ω), and performing the calculations, we obtain the following expression295

Ith,p(x) = C0

3∑
i=1

[
Fi

N∑
n=1

sin
(nπx
L

)
sin

(
nπAi
L

)]
(14)

which is our theoretical estimate for the passive imaging functional when

homogeneous Dirichlet boundary conditions are assumed. The scale factors Fi
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and the arguments Ai are given in Table 1 while C0 is a constant that does not

affect the image and can be omitted.

i Fi Ai

1 1.0 xs

2 0.5 xs + 2xr

3 0.5 xs − 2xr

Table 1: Scale factors Fi and arguments Ai.

In order to obtain Eq. (14), careful attention should be taken for the fre-300

quency discretization to avoid resonances. For that purpose, the discrete ωi’s

are chosen so that |ω2
2i−1 − c2λi| = |ω2

2i − c2λi| = constant for all i’s, as shown

in Fig. 2.

Figure 2: Discrete values ωi’s.

Finite series of products of two sines like the ones appearing in Eq. (14),

have been investigated algebraically (see eq. (22) in appendix) and numerically.305

It has been proved, that if the argument of the one sine is ny (y is the dependent

variable) and the argument of the other sine is nα (α is an arbitrary constant

value 6= kπ, k ∈ N), the aforementioned series exhibits exactly one peak within

the interval (0, π). This can be indicatively seen in Figure 3 where the quantity

Psin(y, α) =
∑N
n=0 sin(ny) sin(nα) is plotted for α = π

6 .310

Comparing the arguments of Psin and of the series in Eq. (14), it can be seen

that the latter exhibits exactly one peak in Ω = [0, L]. Additionally, it has been

proved that the limit of such a series as x approaches Ai, takes the constant

value of N+1
2 , given that the Ai is sufficiently far from any value kL, where

k ∈ N. These observations imply that the image for the source localization,315

contains one peak at the location of the source and two other peaks. These
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Figure 3: Psin(y, α) =
N∑

n=0
sin(ny) sin(nα)

smaller peaks, decrease the quality of the image and they are usually referred

to as ghosts (see Fig. 5). They are caused by reflections on the boundaries of

the domain and their locations depend on the positions of the source xs and the

receiver xr (i.e., the arguments Ai).320

It can be observed, that the ratio between the height of the main peak

which indicates the location of the source, and the maximum height of the

ghost peaks, is 2.0. This ratio is referred to as Signal to Noise Ratio (SNR) and

it is a measure of the quality of the image. One way to increase the SNR in the

present problem, is to increase the number of receivers. Due to the linearity of325

the imaging functional in Eq. (11), an image created by the recordings at Nr

receivers, is equal to the superposition of the images for each one of the receivers

alone. Making use of that property we can write

Ip(x) =
∑
ω

Nr∑
r=1

p̂(xr, ω)Ĝh(xr,x, ω). (15)

It can be observed, that the SNR is linear with respect to the number of

receivers and in this case it becomes 2Nr.330
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4.2. Defect localization with IM

Similarly to the source localization process, in the present section we define

an imaging functional for the defect localization problem using the Green’s

function and going in the frequency domain. For that purpose we assume a

model for our data, i.e., the scattered field at the receiver, that is known as the335

Born approximation [32] and is given by

p̂scat(xr,xs, ω) = k2f̂(ω)

∫
Ωd

Ĝ(xs,x, ω)Ĝ(x,xr, ω)ρ(x)dx, (16)

where k =
ω

cref
is the wavenumber and ρ(x) the reflectivity of the defect

defined as ρ =
c2ref − c2d

c2d
for our example. For a point reflector located at xd

and with reflectivity ρ we get

p̂scat(xr,xs, ω) = k2f̂(ω)ρ Ĝ(xs,xd, ω)Ĝ(xd,xr, ω). (17)

According to [8] and based on this data model, it seems natural to define an340

imaging functional as

Ia(x) =
∑
ω

p̂scat(xr,xs, ω)Ĝh(xr,x, ω)Ĝh(x,xs, ω), (18)

where the superscript a is used to denote active imaging. It can be ob-

served that in this approach, the reversed in time scattered field pscat is back-

propagated in two sub-steps. First, from the receiver xr to a point x of the IW

and second, from x to the source xs. It might seem that the second sub-step345

(from x to xs) is redundant because it is the location of the defect that we

are interested in, not the source. In fact, this sub-step is necessary, because in

order to get a large contribution at the location of the defect, we need to also

account for the propagation from the source to the defect as suggested by the

data model (Eq. (16)). Conclusively, Eq. (18) shows the appropriate imaging350

functional, similar to Eq. (11) but with the two Green’s functions G(xr,x, ω)

and G(x,xs, ω). The appearance of these two Green’s functions, differentiates

IM from TR in the case of defect localization. Indeed, as explained in Sec. 3,
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TR consists in time-reversing the scattered field and then evaluating the field

at the refocusing time tRF . Therefore TR amounts in multiplying the data by355

one Green’s function going from the receiver to the search point in the image.

4.2.1. Modal expansion in 1D for imaging a defect

Equivalently to the source localization process, we will utilize the modal

expansion of the Green’s function to achieve a deeper understanding of IM for

defect localization. Substituting, Ĝh and p̂scat into Eq. (18), we obtain360

Im,a(x) =
∑
ω

k2ρ
(
f̂h(ω)

)2
f̂(ω)Ĝ(xs, xd, ω)Ĝ(xd, xr, ω)Ĝ(xr, x, ω)Ĝ(x, xs, ω),

(19)

where f̂h(ω) is the Fourier transform of the excitation function used to cal-

culate Ĝh. In general f̂h(ω) may be different from f̂(ω) which is the excitation

function in the forward problem. Substituting the expressions for the Green’s

functions and after some calculations we obtain the following expresion

Ith,a(x) = C1

{
13∑
i=1

[
Fi

N∑
n=1

cos

(
2nπx

L

)
cos

(
2nπAi
L

)]
+

N∑
n=1

cos
(nπx
L

)}
+C2,

(20)

where the scale factors Fi and the arguments Ai are given in Table 2 while365

C1 and C2 are constants that do not affect the image quality and can be omitted.

Similarly to Sec. 4.1.1 we have neglected f̂(ω).

i Fi Ai i Fi Ai i Fi Ai i Fi Ai

1 1.0 xd 4 0.5 xd − xs 7 0.5 xd + xr 10 0.25 xd − xs − xr
2 1.0 xs 5 0.5 xd + xs 8 0.5 xs − xr 11 0.25 xd − xs + xr

3 1.0 xr 6 0.5 xd − xr 9 0.5 xs + xr 12 0.25 xd + xs − xr
13 0.25 xd + xs + xr

Table 2: Scale factors Fi and arguments Ai of the image for defect localization.
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The image in Eq. (20), is practically a sum of thirteen series each of which is a

sum of products of two cosines. Such series have been investigated algebraically

(see eq. (23) in appendix) and numerically. It has been proved that if the argu-370

ment of the one cosine is ny (y is the dependent variable) and the argument of

the other cosine is nα (α is an arbitrary constant value 6= kπ + π
2 , k ∈ N), the

aforementioned series exhibit exactly two peaks within the interval (0, 2π) which

are symmetric with respect to the middle of the interval, π. This can be indica-

tively seen in Figure 4 where the quantity Pcos(y, α) =
∑N
n=0 cos(ny) cos(nα) is375

plotted for α = π
6 .

Figure 4: Pcos(y, α) =
N∑

n=0
cos(ny) cos(nα)

Comparing the arguments of Pcos and of the series in Eq. (20), it can be seen

that the latter exhibits exactly two peaks in Ω = [0, L] which are symmetric with

respect to L
2 . Additionally, it has been proved that the limit of such a series as x

approaches Ai, takes the constant value of N+1
2 , given that the Ai is sufficiently380

far from any value kL, where k ∈ N.

Conclusively, we expect a symmetric image that contains 2 ∗ 13 = 26 peaks

one of which should depict the defect (see Figs. 15 and 16). This is, one of

the two symmetric peaks that correspond to the argument Ai = xd. The SNR

of the image is 1.0, because the amplitude of the main peak that depicts the385

defect is the same with the amplitude of other 5 peaks which can be regarded
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as noise. The increase of the SNR is not possible, because in this approach

the symmetry of the image can not be avoided. There will always be an equal

peak at the defect and its symmetric location with respect to L
2 and we can not

choose which one indicates the true defect location. We may though increase390

the quality of the image by increasing the number of receivers and sources (see

Fig. 17). Due to the linearity of the imaging functional in Eq. (18), an image

created by the recordings at Nr receivers due to Ns emitting sources, is equal to

the superposition of the images for each one of the receivers and sources alone.

Making use of that property we can write395

Ia(x) =
∑
ω

Nr∑
r=1

Ns∑
s=1

p̂scat(xr,xs, ω)Ĝh(xr,x, ω)Ĝh(x,xs, ω). (21)

In this way, each summand over the Nr receivers, will add a peak of a specific

height at the location of the defect and another peak of the same height at the

location of each receiver. As a result, the peak at the defect is amplified but

not the other peaks because they are at different locations. The same holds for

the sum over the sources, improving the quality of the image.400

4.3. Total experiment time T

In TR for defect localization (Sec. 3) the choice of the total experiment time

T is of significant importance. If T is multiple of L
cref

, i.e., the wave travels

many times along the length L, then the scattered field, pscat, is complicated

and contains several reflections from the boundaries and the defect. This leads405

to several ghosts in the image and the simplest way to locate the defect is by

increasing the number of sources and receivers while decreasing the time of

the experiment (see Fig. 16). Accordingly, the total time T that provides the

best results is T = |xs−xd|
cref

+ |xd−xr|
cref

+ 2t0, because this is the time where only

the first reflection from the defect is recoded. Due to the fact that xd is not410

a priori known, a total time of T = 2L
cref

+ 2t0 is an optimal choice. This is

because it is sufficiently large for the pulse to travel from xs to xd and then to

xr, independently from the defect location and at the same time it is relatively

small in order to achieve a good image quality.
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In IM, the role of the total time T is similar to the TR case. This is because415

the terms in Eq. (18) are being calculated in the time domain and subsequently

Fourier transformed. In modal expansion however, it is assumed that the total

time is infinite. As a result, the two approaches are comparable, only if a

sufficiently large T (→∞) has been used for the calculation of the terms in Eq.

(18).420

5. Numerical Results

5.1. Source localization in 1D

In the present section we show some indicative results of the source local-

ization process in 1D and compare the theoretical and experimental results

(numerically obtained). In all images the source location is illustrated with a425

green dot while the receivers locations are denoted with red dots. First we show

in Fig. 5 the results obtained for a source located at 0.95L, where L is the

length of the 1D domain, localized with the aid of one receiver at 0.8L. Very

good agreement is evident between all three approaches, TR, imaging with Ip(x)

defined by (11) and imaging with Im,p(x) as in (12) using the modal expansion430

(13) for the Green’s function. As we already mentioned for the source local-

ization problem, imaging with Ip(x) is equivalent to TR and both are equal to

the image Im,p(x) obtained using the modal expansion for the Green’s function,

when the recording time T is large enough (T →∞).

Figure 5: Comparison between TR, imaging with Ip(x) and imaging based on modal expansion

Im,p(x) for a source at 0.95L and a receiver at 0.8L.

The two ghost peaks in Fig. 5, appear due to the presence of boundaries.435

Their location depends on the locations of both source and receiver, and can

20



be exactly predicted with the aid of (14) and the modal expansion analysis

presented in Sec. 4.1.1. A concise illustration of this effect is shown in Fig. 6a

which depicts the final image of a source located at 0.4L obtained using one

receiver at different locations.440

(a) Localization of a source at xs =

0.4L using one receiver at different lo-

cations xr.

(b) Localization of a source at xs =

0.35L using multiple receivers at ran-

dom locations.

Figure 6: Influence of the locations and the number of receivers in the source localization

problem.

The fact that ghost peaks appear at locations that depend on the location

of the receiver, allows us to improve the SNR by adding more receivers. In

this way, the main peak at the source is amplified but not the ghost peaks that

appear in different locations. This effect is illustrated in Fig. 6b where an

increasing number of receivers is used to localize the source.445

For the localization of one source using one receiver, we expect the SNR to

be equal to 2. Due to the fact that we have a linear, undamped system and we

use an imaging functional which is linear as well (recall that the wave equation

is linear with respect to the source and this is true for TR and IM), the SNR in

the case of Nr receivers is expected to be 2Nr. The only reason that may force450

the SNR to deviate from this theoretical (and experimentally verified) value can

be seen in Fig. 6a for xr = 0.5L where the SNR is 1 instead of 2. Practically the

SNR is not always equal to 2Nr because ghost peaks may interfere by adding

up coherently or canceling out each-other and decrease or increase the SNR
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respectively. This later effect is prevalent in the 2D source localization problem,455

where the SNR deviates significantly from the expected value 2Nr.

5.2. Source localization in 2D

In this section, we asses the quality of the 2D imaging approach for local-

ization of one source with the aid of one receiver, using three simple examples.

The results shown in Fig. 7 have been obtained using the imaging functional460

Ip(x) for a large total time that corresponds to the time needed for the waves

to traverse 50 diagonals of the physical domain. The location of the receiver is

depicted with a red ”X”. The SNR is measured by dividing the image value at

the source (depicted with the symbol ”P1”) by the next largest peak (depicted

with the symbol ”P2”).465

(a) example 1 (b) example 2 (c) example 3

Figure 7: Three examples of IM with Ip(x) for one source using one receiver and for total

experiment time corresponding to 50 diagonals.

The expected SNR is again 2 but the interaction between ghost peaks slightly

decrease this value. In fact small changes in the total experiment time have a

small influence on the SNR. This is illustrated in Fig. 8, where the evolution of

the SNR is plotted for the three examples for increasing total experiment time

T . It can be observed that after a time of about 5 diagonals the SNR stabilizes470

to a value close to 2.
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Figure 8: Convergence of SNR with respect to the total recording time T when imaging with

Ip(x).

In Figs. 9a - 9c we present the results obtained using 2D modal expansion

for the same examples as previously. Very good agreement is observed between

the two approaches. Additionally, two 1D images are plotted in each of the Figs.

9a - 9c that correspond to the vertical and horizontal locations of source and475

receiver. The domain is a parallelogram so there is always a wave component

that is reflected along the normal direction. In this way the 1D case is exactly

reproduced. The non-normal components eventually scatter out and the normal

ones become the most prevalent in the formation of the ghost peaks. As a result,

in example 1 (Fig. 9a) the ghost peaks can be predicted by the 1D images except480

from the peaks at the corners which correspond to components that travel along

the diagonal. This is a 2D effect. Similar conclusions can be made by observing

the less symmetric examples 2 and 3.
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(a) example 1 (b) example 2 (c) example 3

Figure 9: The same three examples considered in Fig. 7 but now imaging is performed using

Im,p(x) which relies on the modal expression for the Green’s function. We used here 2000

modes in the expression of the Green’s function.

In accordance with the observations made for 1D imaging, an increase in the

SNR is expected if we add more receivers. Despite the fact that theoretically485

we expect the SNR to increase linearly with the number of receivers with a

factor of 2, this is not reflected in the numerical results. Figs. 10 and 11, show

the relationship between SNR and number of receivers for two different source

locations. In each plot we present the results from four different sets of randomly

placed receivers.490

Figure 10: SNR for a source located in the middle of the domain for 4 different sets of random

receivers.
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Figure 11: SNR for a source located at (0.83Lx, 0.66Ly) for 4 different sets of random receivers.

It is observed that the relationship is approximately linear with a factor

slightly less than 1. The interaction between ghost peaks, also observed in the

1D case, together with the complex 2D effects associated to wave components

traveling along the diagonal, have two significant effects in the 2D image. First,

the SNR significantly deviates from the intuitively expected value of 2Nr and495

second, the robustness of the final image with respect to the number and loca-

tions of the receivers is also decreased.

Figure 12: Image Ip(x) for a source at (0.80Lx, 0.62Ly) and a receiver located on the diagonal

at (0.2Lx, 0.8Ly).

An indicative example of the 2D effect is shown in figure Fig. 12, where the
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receiver is placed on the diagonal and a ghost peak appears at a symmetric,

with respect to the diagonal, location to the source. This peak is exactly equal500

to the true peak making the SNR exactly 1. The later effect is equivalent to the

effect observed in the 1D case in Fig. 6a for xr = 0.5L where the SNR was also

equal to 1.

5.3. Defect localization in 1D

As explained in Sec. 4.3, the defect localization problem is significantly505

more complex and the performance of imaging is highly dependent on the total

experiment time T . The application of the proposed methodology in 1D defect

localization problems is particularly more difficult. This is mainly attributed

to the fact that in the way we model the defect, i.e. as a small element with

different mechanical properties, the 1D domain is separated into two parts. In510

this way, the initial pulse splits into two components when passing through the

defect, and thus this initial reflected pulse may or may not be recorded at all.

This observation suggests that additional assumptions regarding the relative

positions of defect, source and receiver should be made.

Figure 13: Ia(x) image for defect localization in 1D. Defect - �, source - × , receivers - green

◦

Figure 14: Ia(x) image for defect localization in 1D. Defect - �, source - ×, receivers - green ◦

Despite those observations, it is still possible to make conclusions regarding515
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the location of the defect by using many receivers and/or sources. Fig. 13 shows

an example of 1D defect localization with one source and five receivers while in

Fig. 14 the number of sources is increased to five as well. In both plots, we can

see the peak at the defect but there is always a symmetric peak with respect

to the midpoint of the domain. This behavior is discussed in Sec. 4.2 and is520

exactly predicted with the aid of the modal expansion analysis presented in Sec.

4.2.1.

Figure 15: Comparison between Ia(x) and Im,a(x) for xs, xr, xd = 0.95L, 0.12L, 0.67L.

Figure 16: Comparison between Ia(x) and Im,a(x) for xs, xr, xd = 0.29L, 0.23L, 0.87L.

In Figs. 15 and 16, we present the comparison between Ia(x) and Im,a(x)

for two 1D imaging examples. Of course since we used only one receiver and

one source we have multiple peaks of maximum height and we cannot locate525

the defect. Note that when using the modal approach the data are obtained

synthetically using the Born approximation as can be seen in (19) while in

imaging with Ia(x), the data are obtained by solving the wave equation.
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Figure 17: IM with Ia(x) a defect at xd = 0.67L for increasing Nr and Ns.

Figure 18: IM with Ia(x) a defect at xd = 0.67L for an increasing total time T .

Finally, Fig. 17 shows the image quality improvement by increasing the

number of receivers and sources, while Fig. 18 shows that if we use a sufficiently530

large number of receivers and sources, it is possible to locate the defect simply

by steadily decreasing the total experiment time so that only a few reflections

are recorded.

5.4. Defect localization in 2D

In the present section we show imaging examples for defect localization in535

2D. The observations made for the 1D case, and particularly the fact that with

only one receiver and one source we cannot localize the defect, hold here as well.

For that reason we only present examples where at least 8 receivers are being

used.
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(a) 1 diagonal (b) 2 diagonals (c) 8 diagonals

Figure 19: Defect localization using one source and eight receivers in a box configuration

around the defect. The defect is located at the center of the domain.

In Fig. 19 we show the Ia(x) image produced by eight receivers placed in a540

box configuration around the defect and one of them acting also as a source. As

we increase the total experiment time the SNR eventually decreases to values

close to 1. By increasing the number of sources it is possible to only slightly

improve the SNR but we still observe values close to 1 at large experiment

times. So we increase the number of receivers from 8 to 20. Results are shown545

in Fig. 20 where again one source is employed. The improvement of the SNR

is substantial but not dramatic.

(a) 1 diagonal (b) 2 diagonals (c) 8 diagonals

Figure 20: Defect localization using one source and twenty receivers in a box configuration

around the defect. The defect is located at the center of the domain.

Similar conclusions can be made if we use 2 or 3 sources instead of only

one. Collective results of those examples are presented in Fig. 21. We observe
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that the SNR is in general increased for increasing number of receivers and550

sources, but the improvement is not significant and also some exceptions can

be observed. It should be noted that there is no necessity for the sources to

be at the same locations as the receivers, but we make this choice here for

computational convenience.

Figure 21: SNR for defect localization in 2D with a defect in the center of the domain using

8 and 20 receivers in a box configuration surrounding the defect.

In the following we investigate similar situations but in this case we consider555

the receivers to be randomly placed within the 2D domain. The choice of the

locations is performed using the Latin Hypercube Sampling method by properly

partitioning the domain. Again we consider 8 and 20 receivers and 1, 2 or 3

sources. Collective results are shown in Fig. 22.

Similar conclusions like before can be made in this case as well. These are,560

the SNR generally increases for increasing number of receivers and sources. The

SNR is in general better in the boxed configuration examples compared to the

random configuration. It is worth noting that the optimal value for the total

experiment time T proposed in Sec. 4.3 (this is T = 2L
cref

+ 2t0), is in-fact

a reasonable choice since for T ≈ 2 diagonals the SNR is roughly maximum.565

Finally, it is observed that in 2D imaging for defect localization, the SNR suffers

from low sensitivity and robustness with respect to the number of receivers Nr

(and/or sources Ns). Sensitivity because a significant increase of Nr (and/or

Ns) results to only a slight improvement of the SNR and robustness because
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Figure 22: SNR for defect localization in 2D with a defect in the center using 8 and 20 receivers

in a random configuration.

different configurations of a fixed number of receivers, usually result to different570

SNR values. This phenomenon is attributed to the complexity of the problem

and particularly for reasons discussed extensively throughout the present work,

i.e. interaction between ghost peaks, complexity in the recorded signal in the

defect localization case, 2D effects, etc.

(a) 1 diagonal (b) 2 diagonals (c) 8 diagonals

Figure 23: Defect localization using three sources and twenty receivers in a random configu-

ration.

Images obtained using 20 randomly placed receivers and 3 sources are in-575

dicatively shown in Fig. 23 where despite the relatively low SNR values, the

defect can be properly localized.
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6. Conclusion

We addressed the problem of source and defect localization in acoustic

bounded domains using an imaging approach that consists in backpropagat-580

ing the recorded acoustic pressure field in the frequency domain. For the source

localization problem the Imaging Method (IM) used is equivalent to Time Re-

versal (TR). For the defect localization problem IM corresponds to Kirchhoff

Migration widely used in geophysics [26]. IM and TR are no longer equivalent

for the defect localization problem, as explained in Sec. 4.585

The effectiveness of IM was verified by several means. Using the eigenfunc-

tion expansion of the Green’s function, we showed analytically that IM in 1D

performs well by means of localizing a source and a defect despite the inherent

difficulties in the later case. Using these 1D analytical results, it was possible

to explain the complicated ghost peak interactions, resulting from multiple re-590

flections and scattering (defect), and accurately predict the SNR of the images

obtained.

We also performed an extensive performance investigation with respect to

the SNR of IM in 2D. It was found that in source localization using one re-

ceiver, the SNR approaches the value of 2 which is the expected result. For595

increasing number Nr of receivers however, the SNR increases linearly but it is

approximately equal to Nr instead of the expected 2Nr. This phenomenon is

attributed to interactions between multiple ghost peaks and has been analyti-

cally explained in 1D (Sec. 4.1.1). In defect localization, it is not possible to use

only one receiver. In this regard, we considered two different configurations of 8600

and 20 receivers and compared the results. First we considered the receivers in

a box configuration that surrounds the defect and then we considered that the

same number of receivers are randomly distributed within the medium. In both

cases, we obtained SNR values slightly less than 2, which allows us to localize the

defect effectively. Finally, it should be noted that the box configuration resulted605

to slightly higher SNR values compared to the random configuration of receivers

for both 8 and 20 receivers. The increase of the number of receivers from 8 to
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20, resulted to a substantial but not dramatic (as it would be expected) im-

provement of the SNR. The later behavior is again attributed to the complexity

of the recordings due to the multiple emissions and reflections of wave compo-610

nents that result to spatial accumulation of ghost peaks (analytically explained

in Sec. 4.2.1 for 1D).
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Appendix A Identities for Psin and Pcos

Psin(x, y) : =

N∑
n=0

sin(nx) sin(ny)

=
sin(Nx) cos(Ny) sin(y)− cos(Nx) sin(Ny) sin(x)

2 cos(y)− 2 cos(x)
+

sin(Nx) sin(Ny)

2

(22)

Pcos(x, y) : =

N∑
n=0

cos(nx) cos(ny)

=
sin(Nx) cos(Ny) sin(x)− cos(Nx) sin(Ny) sin(y)

cos(y)− cos(x)
+

cos(Nx) cos(Nα)

2

(23)
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