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Abstract

A methodology based on the Wiener path integral technique (WPI) is developed for stochastic response de-

termination and optimization of a class of nonlinear electromechanical energy harvesters. To this aim, first,

the WPI technique is extended to address the particular form of the coupled electromechanical governing

equations, which possess a singular diffusion matrix. Specifically, a constrained variational problem is for-

mulated and solved for determining the joint response probability density function (PDF) of the nonlinear

energy harvesters. Next, the herein extended WPI technique is coupled with an appropriate optimization

algorithm for determining optimal energy harvester parameters. It is shown that due to the relatively high

accuracy exhibited in determining the joint response PDF, the WPI technique is particularly well-suited for

constrained optimization problems, where the constraint refers to low probability events (e.g. probabilities

of failure). In this regard, the WPI technique outperforms significantly an alternative statistical linearization

solution treatment commonly utilized in the literature, which fails to capture even basic features of the re-

sponse PDF. This inadequacy of statistical linearization becomes even more prevalent in cases of nonlinear

harvesters with asymmetric potentials, where the response PDF deviates significantly from the Gaussian. An

illustrative example is considered, while comparisons with pertinent Monte Carlo simulation data demonstrate

the robustness and reliability of the methodology.
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1. Introduction

Vibratory energy harvesters [1] have flourished in recent years as an alternative to common energy sources

such as batteries. The rationale behind this technology is that compact and scalable electronic devices can

be powered by exploiting the ability of active materials (e.g. piezoelectric) to generate an electric potential in

response to external excitation. A cantilever beam with piezoelectric patches attached near its clamped end is5

one of the most widely used energy harvesters [1]. The beam is subjected to environmental excitation causing

large strains near the clamped end, thus producing a voltage difference across the patches, which is converted

into electrical current by utilizing an appropriate circuit. Typically, energy harvesters have been modeled in

the literature as linear systems designed by tuning the first natural frequency to achieve resonance with a given
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a priori known deterministic (harmonic) excitation. To compensate for the significant reduction of the power10

output at off-resonant frequencies, researchers have considered designs with nonlinear restoring forces (e.g.

proportional to the cube of the deflection), which are known to increase the effective resonance bandwidth

of the harvester. Further, most energy harvesters operate in tandem with structures and civil infrastructure

systems (e.g. bridges), which are subjected to environmental excitations that have random characteristics,

and are thus most realistically modeled as stochastic processes [2].15

In the harvester design process, besides the obvious criterion of maximum energy output, additional restric-

tions in terms of maximum displacement of the mechanical oscillator may be required in realistic situations due

to limited available space, or to avoid potential mechanical failures. In this regard, constraints may often relate

to the probability that the voltage and/or the displacement stay within prescribed limits, a strategy that can

potentially lead to more robust and efficient designs than what is currently the norm in the literature. In this20

paper, a methodology for stochastic response determination and optimization of nonlinear energy harvesters

is developed based on the Wiener path integral technique (WPI) [3, 4]. To this aim, first, the WPI technique

is extended to account for the singular diffusion matrix related to the governing equations, by considering

the electrical equation as a constraint, leading to a linearly constrained variational problem to be solved by

nullspace [5] based approaches. Next, the herein extended WPI technique is coupled with an appropriate25

optimization algorithm for determining efficiently the harvester optimal parameters, accounting even for low

probability events (e.g. failures) as constraints. An illustrative example is considered, while comparisons with

pertinent Monte Carlo simulation (MCS) data demonstrate the robustness and reliability of the methodology.

2. Nonlinear electromechanical energy harvester

2.1. Modeling aspects30

As discussed in detail in [1], the dynamics of the system modeling the cantilever beam energy harvester,

can be approximated by the following general mathematical model of coupled electromechanical equations,

expressed in a non-dimensional form as

ẍ+ 2ζẋ+ dU(x)/dx+ κ2y = w(t) (1a)

ẏ + αy − ẋ = 0 (1b)

where x = response displacement; y = electrical quantity (voltage or current); ζ = damping; κ = coupling

coefficient; α = electrical constant; U(x) = potential function and w(t) = external excitation, which is modeled

as a Gaussian white noise stochastic process. The derivative dU(x)/dx represents the generally nonlinear

restoring force which is assumed to be a 3rd order polynomial of the displacement x and takes the non-

dimensional form

dU(x)/dx = x+ λx2 + δx3 (2)

where λ and δ control the intensity of the quadratic and cubic nonlinear terms, respectively. In the present
paper, attention is restricted to monostable asymmetric harvesters, implying that 0 < λ ≤ 2

√
δ and δ > 0. For

this class of nonlinear energy harvesters, it has been argued that maximum mean harvested power is achieved

for λ = 2
√
δ [6].
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2.2. Optimization aspects35

From an optimal design perspective, the objective is typically articulated in the literature as maximizing

the mean stationary harvested power

Ph = αE{y2} (3)

for a given excitation intensity S0; this can be formulated as an optimization problem. In this regard, the
parameter ζ includes the mass, damping and stiffness coefficients of the mechanical system, and its value is

dictated by physical constraints of the particular application, while κ has a monotonic effect on the harvested

power. Accordingly, both ζ and κ are considered fixed and only the nonlinearity δ and the electrical constant

α are being optimized.40

In practice, it is often desirable to apply additional design criteria that enforce constraints related to the

probability that y and/or x stay within prescribed limits. Such a constraint can take the general form Pf < ε,

where the probability of failure Pf is typically related to an “extreme event” characterized by a low probability

of occurrence. In this regard, for the parameter vector z = [α, δ] and for ζ, κ and S0 fixed, the constrained

optimization problem

arg max
z∈Z

Ph(z) s.t. Pf (z) ≤ ε (4)

is formulated, where Z ⊂ R2
++ is an effective domain of parameter values, R++ denotes the set of positive real

numbers and ε is a prescribed value.

Note, however, that a requirement for addressing this problem, is the complete stochastic characterization

of the system response, i.e., knowledge of the joint response PDF, and not only of the response mean and

variance. To this aim, the WPI response determination technique is extended and applied herein for addressing45

the constrained optimization problem of Eq. (4).

3. Wiener Path integral solution technique overview

One of the recently developed promising techniques in stochastic engineering dynamics, that exhibits

relatively high accuracy in determining the joint response PDF, relates to the concept of the Wiener path

integral (WPI) [3]. The essential aspects of the technique are delineated in the present section by considering

the general class of n-dimensional randomly excited structural/mechanical systems whose dynamics is described

by

D[q(t)] = w(t) (5)

where D[.] = nonlinear differential operator, q = system response, and w = a white noise stochastic exci-
tation vector process with E[w(t1)w(t2)] = Bδ(t2 − t1); δ(.) denotes the Dirac delta function and B is the

deterministic diagonal coefficient matrix with the value 2πS0 in the diagonal.50

Next, the transition PDF p(qf , q̇f , tf |qi, q̇i, ti) with (qi, q̇i, ti) denoting the initial state and (qf , q̇f , tf ) the

final state, and qi = q(ti), qf = q(tf ), q̇i = q̇(ti) and q̇f = q̇(tf ), can be written as [4]

p(qf , q̇f , tf |qi, q̇i, ti) =

∫
C{qi,q̇i,ti;qf ,q̇f ,tf}

W [q(t)][dq(t)] (6)
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The above integral represents a functional integration over the space of all possible paths C{qi, q̇i, ti; qf , q̇f , tf},

W [q(t)] denotes the probability density functional of the stochastic process in the path space and [dq(t)] is a

functional measure. The probability density functional for the stochastic process q pertaining to the system of

Eq. (5) is defined as W [q(t)] = exp
(
−
∫ tf
ti
L (q, q̇, q̈) dt

)
where C is a normalization constant and L (q, q̇, q̈)

is the Lagrangian of the MDOF system given by

L(q, q̇, q̈) =
1

2
D[q]TB−1D[q] (7)

Clearly, the largest contribution to the aforementioned functional integral comes from the trajectory qc(t)

for which the integral in the exponential (also known as the stochastic action) becomes as small as possible.

Variational calculus rules dictate that this trajectory with fixed endpoints satisfies the extremality condition

δ
∫ tf
ti
L(q, q̇, q̈)dt = 0 which leads to the Euler-Lagrange (E-L) equations

∂L
∂qj
− ∂

∂t

∂L
∂q̇j

+
∂2

∂t2
∂L
∂q̈j

= 0, j = 1, ..., n (8)

with the set of 4× n boundary conditions

qj(ti) = qj,i q̇j(ti) = q̇j,i

qj(tf ) = qj,f q̇j(tf ) = q̇j,f

j = 1, ..., n (9)

Next, solving equations (8)-(9) yields the n-dimensional most probable path, qc(t), and thus, a single point

of the system response transition PDF can be determined as [4]

p(qf , q̇f , tf |qi, q̇i, ti) ≈ C exp

− tf∫
ti

L(qc, q̇c, q̈c)dt

 (10)

where C is a normalization constant.
Further, note that instead of solving the derived E-L equations (8)-(9), an alternative, direct functional

minimization formulation can be applied, which can be readily coupled with a standard Rayleigh-Ritz solution

approach (see [7]) for determining the most probable path qc(t). In this regard, q is approximated by

q̂ = ψ +Rh ≈ q. (11)

The function ψ(t) is chosen so that it satisfies the boundary conditions, while the trial functions h(t) =
[h0, h1, ..., hL−1]T should vanish at the boundaries.. R ∈ Rn×L is a coefficient matrix, where L is the chosen

number of trial functions considered. Clearly, there is a wide range of options for the choice of functions ψ

and h. In the ensuing analysis, the functions ψ take the form of the Hermite interpolating polynomials, while55

the trial functions h are defined with the aid of the shifted Legendre polynomials as in [8].

A practical advantage of the Rayleigh-Ritz method is that the variational problem (functional minimization)

degenerates to an ordinary minimization problem of a function that depends on a finite number of variables

[9]. Specifically, the functional J (q), dependent on the n functions q(t), is replaced by the function J(R),

dependent on a finite number of n×L coefficientsR. Accordingly, the extremality condition δ
∫ tf
ti
L(q, q̇, q̈)dt =60

0 is replaced by ∂J(R)
∂R = 0 which represents essentially a set of nL nonlinear equations for the unknown

coefficients (parameters) R. Once solved numerically, the most probable path qc is determined via Eq. (11).
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4. Extension of the Wiener path integral technique to account for singular diffusion matrices:

A constrained variational problem

Taking into account the form of Eq. (1), it can be readily seen that a straightforward application of Eq.

(7) is not possible, as it would lead to a singular matrix B. Thus, a modification is required to the WPI

technique presented in Sec. 3 to account for the special form of Eq. (1). In this regard, consider Eq. (1a)

as an under-determined stochastic differential equation (SDE) with 2 unknowns (x and y), excited by the

Gaussian white noise process w(t). For this SDE, and for q = [α, δ]T , the Lagrangian can be expressed as

L(x, y, ẋ, ẍ) =
1

4πS0

[
ẍ+ 2ζẋ+ x+ 2

√
δx2 + δx3 + κ2y

]2
(12)

Clearly, considering Eq. (12) alone is inadequate, as the dynamics described by Eq. (1b) have so far been

neglected. To proceed, Eq. (1b) is treated next as a constraint in the form

φ(y, ẏ, ẋ) = ẏ + αy − ẋ = 0 (13)

Eq. (12) in conjunction with Eq. (13) lead to a constrained variational problem, where the constraint function65
is linear with respect to ẋ, y and ẏ. In this regard, adopting the Rayleigh-Ritz scheme of Sec. 3, and utilizing

the polynomial expansion q̂ = ψ+Rh for q (see Eq. (11)), the constrained variational problem is formulated

as a constrained optimization problem. Utilizing a nullspace approach next, the optimization is restricted

within the space of solutions of φ(q̂, ˙̂q) = φ̂(t) = 0.

Specifically, linearity of the constraint equation ensures that φ̂(t) is a polynomial of degree L+ 4 in t (see

equations (11) and (13)), with coefficients linear in the 2L unknown expansion parameters R ∈ R2×L. Setting

these polynomial coefficients equal to zero, yields a set of L+ 4 linear equations with 2L unknown variables.

Next, expressing the unknown parameters R ∈ R2×L as a vector u ∈ Rp, where p = 2L, the aforementioned

equations are cast as a linear system in the form

Au = b (14)

where A ∈ Rs×p, b ∈ Rs and s = L + 4. This system is underdetermined, while A might not have full row70

rank, i.e., rA ≤ s. For instance, dependent rows can appear because some of the coefficients of the polynomials

φ̂(t) set to zero, might be zero anyway, leading to 0 = 0 equations.

It is now possible to restrict minimization of the objective function J = J(u), where u ∈ Rp, to the set of

solutions of Eq. (14) which lie on a lower dimensional space of dimension p − rA. To elaborate further, note

that the vector space U ⊆ Rp of solutions of the system Au = 0, can be fully described with the aid of a

basis S = [s1 s2 ... sp−rA ] for the nullspace of A [5] where S ∈ Rp×(p−rA). In this regard, any element u ∈ U

can be represented by an element v ∈ V ⊆ Rp−rA as u = Sv. Then the vector space Ub ⊆ Rp of solutions

of Au = b can be obtained as an affine transformation of U . More specifically, the solutions u ∈ Ub of Eq.

(14) can be represented as u = Sv + up where up is any particular solution of Eq. (14) [5]. It becomes now

possible to cast the original constrained optimization problem

arg min
u∈Rp

J(u) subject to Au = b (15)
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Figure 1: Stationary marginal response PDFs of a nonlinear energy harvester with ζ = 0.1, κ = 0.65, α = 0.8, δ = 0.2 and

S0 = 0.05. Solid gray line: MC - 50000 realizations, Solid black line: Statistical linearization, Dotted line with “x”: WPI

Rayleigh-Ritz-nullspace approach with 7 Legendre polynomials.

into the lower dimensional, unconstrained problem

arg min
v∈Rp−rA

J(Sv + up) (16)

which is solved by applying the optimality conditions
∂J(Sv+up)

∂v = 0. Note that the minimizer u∗ of Eq. (15)
can be obtained by the minimizer v∗ of Eq. (16) as u∗ = Sv∗ + up.

5. Numerical Examples75

To demonstrate the efficiency and accuracy of the proposed technique for analyzing and optimizing energy

harvesting systems, a mono-stable asymmetric harvester (λ = 2
√
δ, δ ≥ 0) described by equations (1),(2) is

considered in this section.

5.1. Energy harvester stochastic response analysis

Utilizing the herein extended WPI technique of Sec. 4, the stationary joint response PDF p(x, ẋ, y) of the80

nonlinear energy harvester with mono-stable asymmetric potential and parameters ζ = 0.1, κ = 0.65, α = 0.8,

δ = 0.2 and S0 = 0.05 is determined. The corresponding marginal PDFs are compared both with pertinent

MCS data, and with PDF estimates based on a statistical linearization treatment [10]. The marginal stationary

response PDFs of x and y of this energy harvester are shown in Fig. 1, where the WPI based solutions are

compared both with pertinent MCS data, and with solutions obtained by applying the statistical linearization85

method [10].

Clearly, because of the fundamental assumption of a Gaussian response PDF, a standard statistical lin-

earization treatment fails to capture, not only the tails, but also basic features of the response PDFs. Note
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Figure 2: Stationary joint response PDFs of a nonlinear energy harvester with ζ = 0.1, κ = 0.65, α = 0.8, δ = 0.2 and S0 = 0.05

obtained by the WPI Rayleigh-Ritz-nullspace approach with 7 Legendre polynomials.

that this inadequacy of statistical linearization becomes significant from an optimization perspective as well,

especially when a constrained optimization problem such as the one in Eq. (4) is considered. In particular, if90

maximizing E{y2} is the only objective to be taken into account, then statistical linearization could potentially

provide with relatively accurate results as suggested by the accuracy degree shown in Fig. 1b related to the

PDF of y. However, if a more sophisticated optimization strategy is sought for, such as the one in Eq. (4)

with a constraint of the form Pf = P (|x| > xlimit) < ε, then satisfactory accuracy in estimating the tails of

the PDF of x is obviously required. As clearly shown in Fig. 1a, this is achieved by the WPI technique, but95

not by a statistical linearization treatment.

5.2. Energy harvester optimization

The constrained optimization problem of Eq. (4) is considered in this section. The objective function

of this problem, i.e. Ph(z) with z = [α, δ]T , requires the calculation of E{y2} (see Eq. (3)). Additionally,

accounting for the constraint that the probability of failure does not exceed a prescribed threshold ε, requires

knowledge of the joint response PDF. In this regard, the extended WPI technique developed in Sec. 4 is

employed next. The failure scenario x < xlimit is taken into account, and the corresponding probability of

failure is defined as

Pf = P (x < xlimit) =

∫ xlimit

−∞
ps(x)dx (17)

where ps(x) is the stationary marginal PDF of the displacement x. For the solution of the corresponding

constrained optimization problem (see Eq. (4)), a penalty approach is utilized. This yields an unconstrained

problem with the modified objective function Ph,ε(z) = 1ε(z)Ph(z) where z = [α, δ]T and 1ε(z) is an indicator100

function equal to 0 if Pf (z) ≥ ε and to 1 otherwise.

Taking into account that information regarding the gradient of Ph,ε(z) is not available in general, and

that the modified objective function Ph,ε(z) is discontinuous, the gradient-free Generalized Pattern Search

(GPS) optimization algorithm is utilized next [11]. First, the performance of the GPS algorithm is assessed

by comparisons with brute-force full grid evaluations of the objective function Ph,ε(z) by relying on statistical105

linearization. In this regard, a full grid computation of PSLh,ε (α, δ) in the interval {α, δ} ⊂ [0.5, 1.5] × [0, 0.5]
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Figure 3: Stationary mean harvested power Ph,ε obtained by statistical linearization with constraint of the form of Eq. (17),

and parameters xlimit = −3.0 and ε = 10−2. Full grid computation with mesh size 0.007 required 10296 objective function

evaluations: (αopt, δopt) = (1.0600, 0.1890), PSLh,ε (αopt, δopt) = 0.1850 and Pf (αopt, δopt) = 0.009864.
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Figure 4: Stationary mean harvested power Ph,ε obtained by statistical linearization with constraint of the form of Eq. (17),

and parameters xlimit = −3.0 and ε = 10−2. GPS optimization required 164 objective function evaluations to converge:

(αopt, δopt) = (1.0580, 0.1907), PSLh,ε (αopt, δopt) = 0.1853 and Pf (αopt, δopt) = 0.009987.

with a mesh size of 0.007 and parameter values ζ = 0.1, κ = 0.65 and S0 = 0.05, is presented in Fig. 3, with

the constraint Pf = P (x < −3.0) ≤ 10−2, showing the existence of a global optimum point. Next, the GPS

algorithm is employed to solve the same problem and the results presented in Fig. 4 exhibit practically the

same accuracy as the full grid computation. Note, however, that approximately only ∼ 0.5% of the objective110

function evaluations used in the full grid computation are required by the GPS algorithm, rendering the overall

optimization scheme computationally efficient.

Finally, the optimization results obtained by the WPI technique are shown in Fig. 5, revealing the signifi-

cant but anticipated difference between the WPI and the linearization based optimal designs. This is attributed

primarily to the incapability of statistical linearization to capture accurately the tails of the response PDF,115

which are related to the constraint of Eq. (17). The above argument is corroborated further by Table 1,
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Constraint: Pf = P (x < −3.0) ≤ 10−2

WPI optimum Stat. Lin. optimum

(α, δ) = (0.9874,0.0625) (α, δ) = (1.0580,0.1907)

Ph 0.16886 0.18530

Pf 0.00998 0.00999

MCS

Ph 0.17021 0.17731

Pf 0.00932 0.03664

Table 1: Assessment of the WPI and statistical linearization based optima using MCS with 50000 realizations.
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Figure 5: Stationary mean harvested power Ph,ε obtained by WPI with constraint of the form of Eq. (17), and parameters xlimit =

−3.0 and ε = 10−2. GPS optimization required 144 objective function evaluations to converge: (αopt, δopt) = (0.9874, 0.0625),

PWPI
h,ε (αopt, δopt) = 0.1689 and Pf (αopt, δopt) = 0.009981.

where the WPI and linearization based optimal designs are assessed by using MCS. In particular, the WPI

based optimum design yields a probability of failure of 0.00932, which is very close to the prescribed threshold

(10−2). On the other hand, the linearization based optimum design yields a Pf = 0.03664 that is significantly

larger than 10−2, and thus violates the imposed constraint.120

6. Concluding remarks

A methodology based on the WPI technique has been developed for determining the response of a class of

nonlinear electromechanical energy harvesters subject to Gaussian white noise excitation. In this regard, the

WPI technique [3, 4] has been extended to account for a singular diffusion matrix present in the governing

equations. Specifically, treating the coupled electromechanical equations as an “underdetermined” SDE in125

conjunction with a constraint equation has yielded a constrained variational problem, solved by utilizing the

nullspace of the constraint equation. It has been shown that the WPI technique exhibits satisfactory accuracy

in determining the joint response PDF as compared with pertinent MCS data, and significantly outperforms an
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alternative statistical linearization treatment. Next, the herein extended WPI technique has been coupled with

an appropriate optimization algorithm (GPS) for determining optimal parameters for the energy harvester with130

constraints referring to a failure probability. For such cases, where relatively high accuracy in determining

the response PDF tails is required, optimization based on statistical linearization yields, in general, either

sub-optimal solutions or solutions that violate the constraint.

References

[1] M. F. Daqaq, R. Masana, A. Erturk, D. D. Quinn, On the role of nonlinearities in vibratory energy135

harvesting: a critical review and discussion, Applied Mechanics Reviews 66 (4) (2014) 040801.

[2] S. Adhikari, M. Friswell, D. Inman, Piezoelectric energy harvesting from broadband random vibrations,

Smart Materials and Structures 18 (11) (2009) 115005.

[3] I. Kougioumtzoglou, P. Spanos, An analytical Wiener path integral technique for non-stationary response

determination of nonlinear oscillators, Probabilistic Engineering Mechanics 28 (2012) 125–131.140

[4] I. A. Kougioumtzoglou, P. D. Spanos, Nonstationary stochastic response determination of nonlinear sys-

tems: A Wiener path integral formalism, Journal of Engineering Mechanics 140 (9) (2014) 04014064.

[5] G. Strang, Linear Algebra and Its Applications, 4th Edition, Thomson Higher Education, Belmont, CA,

2006.

[6] Q. He, M. F. Daqaq, Electric load optimization of a nonlinear mono-stable duffing harvester excited by145

white noise, Meccanica 51 (5) (2016) 1027–1039.

[7] O. C. Zienkiewicz, Finite elements and approximation, Dover Publications, Mineola, N.Y, 2006.

[8] I. A. Kougioumtzoglou, A Wiener Path Integral Solution Treatment and Effective Material Properties of

a Class of One-Dimensional Stochastic Mechanics Problems, Journal of Engineering Mechanics 143 (6)

(2017) 04017014.150

[9] L. D. Elsgolc, Calculus of variations, Dover Publications, Mineola, N.Y, 2007.

[10] J. B. Roberts, P. D. Spanos, Random Vibration and Statistical Linearization (Dover Civil and Mechanical

Engineering), Dover Publications, Mineola, NY, 2003.

[11] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on optimization 7 (1) (1997)

1–25.155

10


	Introduction
	Nonlinear electromechanical energy harvester
	Modeling aspects
	Optimization aspects

	Wiener Path integral solution technique overview
	Extension of the Wiener path integral technique to account for singular diffusion matrices: A constrained variational problem
	Numerical Examples
	Energy harvester stochastic response analysis
	Energy harvester optimization

	Concluding remarks

