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Abstract

The recently developed Wiener Path Integral (WPI) technique for determining the joint response probabil-

ity density function of stochastically excited nonlinear systems is extended herein to account for systems

with singular diffusion matrices. Among others, indicative examples include partially forced systems, hystere-

sis modeling via additional auxiliary state equations, as well as certain electromechanical energy harvesting

systems. Specifically, the governing equations of motion can be represented as an underdetermined set of

stochastic differential equations (SDEs), coupled with a set of deterministic ordinary differential equations

(ODEs) acting as constraints. Next, appropriately defining the Lagrangian function of the system leads to a

constrained variational problem to be solved for the most probable path, and thus, for the system response

PDF. Two numerical examples pertaining to both linear and nonlinear constraint equations are considered,

whereas comparisons with Monte Carlo simulation data demonstrate a high degree of accuracy.

Keywords: singular diffusion matrix; path integral; constrained variational problem; stochastic dynamics;

nonlinear system;

1. Introduction

Efficient analysis and design of engineering dynamical systems is often hindered by limitations pertaining

to complex system nonlinearities and random excitations. Despite the versatility and simplicity of Monte

Carlo simulation schemes as response analysis techniques, they become eventually prohibitive due to the asso-

ciated high computational cost. As an alternative semi-analytical methodology, the recently developed Wiener5

path integral (WPI) technique appears promising in exhibiting both significant accuracy and computational

efficiency. In particular, the WPI can address systems subject to non-white, non-Gaussian and non-stationary

excitation processes [1], as well as endowed with fractional derivative elements [2]. Further, it’s computational

efficiency in addressing relatively high dimensional problems has been significantly improved recently [3],[4].

In this paper, the WPI technique is further generalized to cope with systems with singular diffusion ma-10

trices. Among others, indicative examples include partially forced systems, hysteresis modeling via additional

auxiliary state equations, as well as certain electromechanical energy harvesting systems [5]. Specifically, the
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governing equations of motion can be represented as an underdetermined set of stochastic differential equa-

tions (SDEs), coupled with a set of deterministic ordinary differential equations (ODEs) acting as constraints.

Next, appropriately defining the Lagrangian function of the system leads to a constrained variational problem15

to be solved for the most probable path, and thus, for the system response PDF. Two numerical examples

pertaining to both linear and nonlinear constraint equations are considered, whereas comparisons with Monte

Carlo simulation data demonstrate a high degree of accuracy.

2. Wiener path integral solution technique overview

2.1. Standard formulation20

One of the recently developed promising techniques in stochastic engineering dynamics relates to the

concept of the Wiener path integral (WPI) [6]. The technique exhibits not only relatively high accuracy

in determining the joint response PDF, but also significant versatility as it can account for multi-degree-

of-freedom systems with various nonlinearity types [7], systems with fractional derivative terms [2], as well

as non-white, non-Gaussian and non-stationary excitation [1]. The essential aspects of the technique are

delineated in the present section by considering the general class of n-dimensional randomly excited nonlinear

structural/mechanical systems whose dynamics is described by

Mẍ+ g(x, ẋ) = w(t) (1)

In Eq. (1), x is the system response, M is a mass matrix, g is a nonlinear function in general and w is a

white noise stochastic excitation vector process with E[w(t1)w(t2)] = Dδ(t2− t1); δ(.) denotes the Dirac delta

function and D is a deterministic coefficient matrix given by

D =


2πS0 . . . 0

...
. . .

...

0 . . . 2πS0

 (2)

Next, relying on the mathematical framework of path integrals [8], the transition PDF p(xf , ẋf , tf |xi, ẋi, ti)

can be written as [7]

p(xf , ẋf , tf |xi, ẋi, ti) =

∫
C{xi,ẋi,ti;xf ,ẋf ,tf}

W [x(t)][dx(t)] (3)

with {xi, ẋi, ti} denoting the initial state and {xf , ẋf , tf} the final state, where xi = x(ti), xf = x(tf ),

ẋi = ẋ(ti) and ẋf = ẋ(tf ). Eq. (3) represents a functional integral over the space of all possible paths

C{xi, ẋi, ti;xf , ẋf , tf}, W [x(t)] denotes the probability density functional of the stochastic process in the

path space and [dx(t)] is a functional measure. Further, the probability density functional for the stochastic

vector process x(t) pertaining to the system of Eq. (1) is defined as (e.g., [7])

W [x(t)] = exp

− tf∫
ti

L (x, ẋ, ẍ) dt

 (4)
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where L (x, ẋ, ẍ) denotes the Lagrangian function expressed as [7]

L(x, ẋ, ẍ) =
1

2
[Mẍ+ g(x, ẋ)]TD−1[Mẍ+ g(x, ẋ)] (5)

Note that Eq. (4) can be loosely interpreted as the probability assigned to each and every possible path

starting from {xi, ẋi, ti} and ending at {xf , ẋf , tf}.

Clearly, the largest contribution to the functional integral of Eq. (3) comes from the trajectory xc(t) for

which the integral in the exponential of Eq. (4) (also known as stochastic action) becomes as small as possible;

see [8] for instance. According to calculus of variations (e.g., [9],[10]) this trajectory xc(t) with fixed endpoints

satisfies the extremality condition

δ

∫ tf

ti

L(x, ẋ, ẍ)dt = 0 (6)

which leads to the Euler-Lagrange (E-L) equations

∂L
∂qj
− ∂

∂t

∂L
∂q̇j

+
∂2

∂t2
∂L
∂q̈j

= 0, j = 1, ..., n (7)

with the set of boundary conditions

qj(ti) = qj,i q̇j(ti) = q̇j,i

qj(tf ) = qj,f q̇j(tf ) = q̇j,f

j = 1, ..., n (8)

Next, solving equations (7)-(8) yields the n-dimensional most probable path, xc(t), and thus, a single point of

the system response transition PDF can be determined as [7]

p(xf , ẋf , tf |xi, ẋi, ti) ≈ C exp

− tf∫
ti

L(xc, ẋc, ẍc)dt

 (9)

where C is merely a normalization constant. It can be readily seen by comparing equations (3) and (9) that in

the approximation of Eq. (9) only one trajectory, i.e., the most probable path xc(t), is considered in evaluating

the path integral of Eq. (3). Regarding the degree of this approximation, direct comparisons of Eq. (9) with25

pertinent MCS data related to various engineering dynamical systems [7],[1],[2],[4], [5] have demonstrated

satisfactory accuracy; see also [11].

Further, note that instead of directly solving the derived E-L equations (7)-(8), an alternative solution

approach can be applied for determining the most probable path xc(t). Specifically, since xc is the solution

of the variational problem

minimize J (x, ẋ, ẍ) =

∫ tf

ti

L(x, ẋ, ẍ)dt, (10)

i.e. it is is an extremum for the functional J , calculus of variations rules suggest that a direct functional

minimization formulation can be applied, which can be readily coupled with a standard Rayleigh-Ritz solution

approach (see [12],[2],[13]). In this regard, x(t) is approximated by

x̂(t) = ψ(t) +Rh(t) ≈ x(t). (11)
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The function ψ(t) is chosen so that it satisfies the boundary conditions, while the trial functions h(t) =

[h0(t), h1(t), ..., hL−1(t)]T should vanish at the boundaries, i.e. h(ti) = h(tf ) = 0. R ∈ Rn×L is a coefficient

matrix, where L is the chosen number of trial functions considered. Clearly, there is a wide range of options

for the choice of functions ψ and h. In the ensuing analysis, the Hermite interpolating polynomials

ψj(t) =

3∑
k=0

αj,kt
k (12)

are adopted, i.e., ψ = [ψ1, ψ2, ..., ψn]T , where the n× 4 coefficients αj,k are determined by the n× 4 boundary

conditions in Eq. (8). For the trial functions, the shifted Legendre polynomials given by the recursive formula

Pp+1(t) =
2p+ 1

p+ 1

(
2t− ti − tf
tf − ti

)
Pp(t)− p

p+ 1
Pp−1(t), p = 1, 2, ... (13)

are employed, which are orthogonal in the interval [ti, tf ], with P0(t) = 1; and P1(t) = (2t− ti − tf )/(tf − ti).

The trial functions take the form

hl(t) = (t− ti)2(t− tf )2Pl(t). (14)

A practical advantage of the Rayleigh-Ritz method is that the variational problem (functional minimization)

degenerates to an ordinary minimization problem of a function that depends on a finite number of variables

[10]. Specifically, the functional J , dependent on the n functions x(t) (and their time derivatives), is replaced

by the function J(R), dependent on a finite number of n × L coefficients R. Accordingly, the extremality

condition in Eq. (6) is replaced by the optimality condition

∂J(R)

∂R
= 0 (15)

which represents essentially a set of nL nonlinear equations for the unknown coefficients (parameters) R. Once

solved numerically, the most probable path xc is determined via Eq. (11).

2.2. Computational aspects30

Considering fixed initial conditions (xi, ẋi) (i.e., system initially at rest), both approaches, i.e. the E-L

equations ((7)-(8)) and the Rayleigh-Ritz solution scheme, yield a single point of the joint response PDF via

the solution of a deterministic boundary value problem (BVP). According to a brute-force implementation of

the WPI technique, choosing a time instant tf , an effective domain of values is considered for the joint response

PDF p(xf , ẋf , tf |xi, ẋi, ti). Next, discretizing the effective domain using N points in each dimension, the joint35

response PDF values are obtained corresponding to the points of the mesh. Specifically, for an n-DOF system

with 2n stochastic dimensions (n displacements and n velocities) the number of BVPs to be solved is N2n.

It is clear that the computational cost becomes prohibitive for relatively high-dimensional MDOF systems.

However, efficient implementations, such as [3], based on the idea of employing a polynomial expansion for

the joint response PDF, have been shown to significantly reduce the computational cost. A more recent40

improvement presented in [4], utilizes a compressive sensing approach to further reduce the computational

cost of the WPI technique.
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3. Extension of the Wiener path integral technique to account for singular diffusion matrices:

A constrained variational problem

In the present work, attention is directed to a general class of systems with singular diffusion matrices, and

in particular, to systems that can be cast in the form

Mẍ+ g(x, ẋ) =

w(t)

0

 (16)

where M is an n × n, possibly singular mass matrix, and g is a nonlinear vector valued function. Clearly,45

comparing equations (1) and (16) , the D matrix corresponding to the right hand-side of Eq. (16) is singular,

and thus, the Lagrangian of Eq. (5) cannot be defined in a straightforward manner.

In the following, singularity of D is treated by partitioning the system of Eq. (16) into two coupled

subsystems. One that contains the equations corresponding to vector w on the RHS and one referring to the

equations that correspond to the zero entries, i.e.,Mf ẍ+ gf (x, ẋ)

Muẍ+ gu(x, ẋ)

 =

w(t)

0

 (17)

where subscripts f and u refer to “forced” and “unforced”, respectively. Note that the upper subsystem,

which will be referred to as the f−system, constitutes an undetermined system of n−m SDEs and the lower

subsystem, which will be referred to as the u−system, represents an undetermined system of m homogeneous50

ODEs. Therefore, it can be argued that the motion of the complete dynamical system in Eq. (16) is governed

by the f−system of equations constrained, however, by the u− system of equations.

In this regard, the solution to the considered problem is pursued by seeking for the solutions of the f−system

that satisfy also the constraints of the u− system. This leads to the formulation of a constrained variational

problem for the determination of the most probable path xc, i.e.,

minimize Jf (x, ẋ, ẍ) =

∫ tf

ti

Lf (x, ẋ, ẍ)dt (18)

subject to φ(x, ẋ, ẍ) = Muẍ+ gu(x, ẋ) = 0 (19)

where the Lagrangian function in Eq. (18) corresponds to the f−system only, and is given by

Lf (x, ẋ, ẍ) =
1

2
[Mf ẍ+ gf (x, ẋ)]TD−1f [Mf ẍ+ gf (x, ẋ)] (20)

where Df related to the f-system is the nonsingular square submatrix of D.

Constrained variational problems of the form of Eqs. (18)-(19) can be solved by using the general Lagrange

multiplier approach of [14] and [15]. This leads to an unconstrained variational problem by considering the

auxiliary Lagrangian function

L∗(x, ẋ, ẍ) = Lf (x, ẋ, ẍ) + λ(t)φ(x, ẋ, ẍ) (21)

This yields a system of n Euler-Lagrange equations similar to the ones in Eq. (7)-(8), to be solved together

with the m constraint function in Eq. (19) for the n unknown functions x(t) and the m unknown Lagrange55
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multiplier functions λ(t). In practice, however, the reformulation of this complex system of n + m equations

to an equivalent first order, required by most numerical BVP solvers, requires multiple time differentiations

of the constraint functions. As a result, the time-derivatives of the constraints are fulfilled, but not the

constraints themselves. This is a common limitation in several numerical methods for BVPs, as highlighted

in [16]. Therefore, in the present work, attention is directed to a Rayleigh-Ritz solution approach for the60

determination of the most probable path.

In this regard, the polynomial expansion x̂(t) = ψ(t) +Rh(t) (see Eq. (11) and the explanation below) is

adopted for the response vector x(t) that reduces the functional Jf (x, ẋ, ẍ) to a function J(r) := Jf (x̂, ˙̂x, ¨̂x),

where r ∈ Rp, is the vectorized form of the expansion parameter matrix R ∈ Rn×L and p = nL. In addition,

the functions φ̂(r, t) := φ(x̂, ˙̂x, ¨̂x) are defined, and the constraints in Eq. (19) are replaced by

φ̂(r, t) = 0 (22)

The adoption of the Rayleigh-Ritz solution approach allows for the reduction of the constrained variational

problem in Eq. (18)-(19) to an ordinary constrained optimization problem, and facilitates its numerical

treatment.

3.1. Linear constraints65

In the special case that the constraint functions in Eq. (19) are linear in x and its time derivatives, i.e.

gu(x, ẋ) = Cẋ +Kx, where C and K are square matrices, a considerably efficient solution scheme can be

pursued by restricting the optimization within the space of solutions of Eq. (22) via a nullspace approach.

Specifically, linearity of the constraint equations ensures that φ̂(r, t) is a vector of m polynomial functions,

each of degree L + 4 in t (see equations (11) - (14)), with coefficients linear in the nL unknown expansion

parameters r. Setting these polynomial coefficients equal to zero, yields a set of m(L + 4) linear equations

with p = nL unknown variables. Next, these equations are cast as a linear system of the form

Ar = b (23)

where A ∈ Rs×p, b ∈ Rs and s = m(L+ 4). Of course, for any well-posed constrained optimization problem,

the number of independent constraints is smaller than the dimension of x. For the herein concerned problem,

this yields m(L+ 4) < p, which provides the lower bound L > 4m
n−m for the number L of Legendre polynomials

used in the polynomial expansion. The system in Eq. (23) is underdetermined, while A may not have full row

rank, i.e., rA ≤ s.70

The corresponding constrained optimization problem

arg min
r∈Rp

J(r) subject to Ar = b (24)

of dimension p is recast next into a lower dimensional unconstrained problem of dimension p− rA as

arg min
v∈Rp−rA

J(Sv + rp) (25)

where S = [s1 s2 ... sp−rA ] ∈ Rp×(p−rA) is a basis for the nullspace of A [17] and rp is any particular solution

of Eq. (23) [17], [18]; see also [19]. Note that the minimizer r∗ of Eq. (24) can be obtained by the minimizer

v∗ of Eq. (25) as r∗ = Sv∗ + rp.
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3.2. Nonlinear constraints

In the more general case of nonlinear constraints, it is possible to formulate an optimization problem with

nonlinear equality constraints and utilize a suitable solution method, e.g. the augmented Lagrangian method

(ALM). More specifically, a necessary and sufficient condition for Eq. (22) to hold is

ξ(r) :=

√√√√√ tf∫
ti

φ̂
2
(r, t)dt = 0 (26)

and the corresponding optimization problem can be formulated as

arg min
r∈Rp

J(r) subject to ξ(r) = 0 (27)

In general, optimization problems of this form are among the most challenging ones [20], with the augmented

Lagrangian method (ALM) being one of the typically used solution approaches. The ALM approximates the

solution of the problem in Eq. (27) by successively minimizing the augmented Lagrangian function

LA(r,λ;µ) = J(r)−
m∑
i=1

λiξi(r) +
µ

2

m∑
i=1

ξ2i (r) (28)

for an increasing sequence of penalty factors µ. Therefore, a sequence of unconstrained subproblems is formu-

lated, where the solution of the previous problem is used as the initial guess for the next one, i.e.,

rk+1 = arg min
r∈Rp

rinit=rk

LA(r,λk;µk) (29)

where the Lagrange multiplier vector λ at each step is given by the explicit estimate

λk+1 = λk − µkξ(rk) (30)

and rinit denotes the initial guess for the solution of the corresponding optimization problem.75

The ALM has been shown to improve the ill-posedeness of the well known quadratic penalty method (QPM),

as it can approximate the solution of the original problem even with moderate values of the penalty factor

µ [20]. Also, note that the augmented Lagrangian function in Eq. (28) can be derived as the dual of the

corresponding quadratic penalty function of the QPM, as shown in [21]. Finally, for the solution of the

unconstrained subproblems as well as for the problem in Eq. (25), a standard quasi-Newton method is80

utilized, in conjunction with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula [22], for the explicit

approximation of the Hessian matrix.

4. Numerical Examples

To demonstrate the reliability of the proposed technique for determining the response PDF of stochastically

excited MDOF systems with singular diffusion matrices, two indicative examples are considered in this section.85

The first example pertains to a 2-DOF oscillator, where only the first DOF is stochastically excited. Further,

nonlinearities relate only to the first DOF as well, so that the second equation is linear, and can be treated

via the linear constraints approach of Sec. 3.1. The second example refers to the same system as above, but

the constraint equation is nonlinear as well and is treated via the approach of Sec. 3.2.
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4.1. Partially forced 2-DOF oscillator90

The following partially forced 2-DOF oscillator is considered in the present section, with linear and with

nonlinear constraints, i.e.,

Mẍ+Cẋ+Kx+ g(x, ẋ) =

w(t)

0

 (31)

where

M =

1 0

0 1

 , C =

 0.2 −0.1

−0.1 0.1

 , K =

 2 −1

−1 1

 (32)

and S0 = 0.1.

4.1.1. Linear constraints

First, a version of the 2-DOF oscillator of Eq. (31) with stiffness and damping nonlinearities in the first

equation and linear second equation is considered; thus, yielding linear constraints in the proposed computa-

tional framework. In particular, the nonlinear function g(x, ẋ) takes the form

g(x, ẋ) = ε

c11ẋ31 + k11x
3
1

0

 (33)

where x1 is the first component of the response vector x, c11 and k11 are the upper left elements of matrices

C and K respectively, and the magnitude of the nonlinearity ε is taken equal to 0.5.
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Figure 1: Marginal response PDFs of a partially forced 2-DOF nonlinear oscillator with linear constraints.

The WPI technique in conjunction with the methodology described in Sec. 3.1 is utilized next, and the95

joint response PDF p(x, ẋ) is calculated for two time instants t = 2 s and t = 8 s. The corresponding marginal

response PDFs are presented in Fig. 1, and compared with pertinent Monte Carlo simulation (MCS) results

(10000 realizations), demonstrating a high degree of accuracy. A standard fourth-order Runge-Kutta numerical

integration scheme is employed for solving the governing equations of motion within the MCS context.

4.1.2. Nonlinear constraints100

Next, a second version of the 2-DOF oscillator in Eq. (31) with stiffness nonlinearities in both equations

is considered; thus, yielding nonlinear constraints in the proposed computational framework. In this case, the
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nonlinear function g(x, ẋ) takes the form

g(x, ẋ) = ε

k11x31
k22x

3
2

 (34)

where x1 and x2 are the first and second components of the response vector x, k11 and k22 are the upper left

and lower right elements of matrix K respectively, and the nonlinearity magnitude ε is taken equal to 0.5.
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Figure 2: Marginal response PDFs of a partially forced 2-DOF nonlinear oscillator with nonlinear constraints at t = 1 s for

increasing values of the penalty factor µ.

The WPI technique in conjunction with the methodology described in Sec. 3.2 is utilized next. In this

context, the joint response PDF p(x, ẋ) at time t = 1 s is obtained using the ALM, where the augmented

Lagrangian function is being sequentially minimized for the increasing sequence of penalty factors µ = 1, 9,105

81, 729, 6561, 59049, 531441. After appropriate integration of the joint PDF, the corresponding marginal

response PDFs are obtained for three values of µ and presented in Fig. 2. A comparison with pertinent Monte

Carlo simulation (MCS) results (10000 realizations) demonstrates the convergence of the marginal PDFs to

the MCS estimates for increasing µ.
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Figure 3: Marginal response PDFs of a partially forced 2-DOF nonlinear oscillator with nonlinear constraints at t = 1 s for

increasing values of the penalty factor µ.

Moreover, the marginal response PDFs of all the response quantities for sufficiently large values of µ for110

two time instants t = 1 s and t = 3 s, are shown in Fig. 3. In addition, the joint response PDFs p(x1, x2),

p(x1, ẋ1) and p(x2, ẋ2) are shown in Figures 4, 5 and 6, respectively, for the two time instants t = 1 s and t = 3

s as well. In a similar manner as before, comparisons with MCS data demonstrate a high degree of accuracy.
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(a) MCS - t = 1 s (b) WPI - t = 1 s (c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 4: Joint response PDF p(x1, x2) of a partially forced 2-DOF nonlinear oscillator with nonlinear constraints at t = 1 s and

t = 3 s.

(a) MCS - t = 1 s (b) WPI - t = 1 s (c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 5: Joint response PDF p(x1, ẋ1) of a partially forced 2-DOF nonlinear oscillator with nonlinear constraints at t = 1 s and

t = 3 s.

5. Concluding remarks

A methodology based on the WPI technique has been developed for determining the nonstationary joint115

response PDF of a class of nonlinear dynamical systems with singular diffusion matrices. In this regard, the

WPI technique [7],[3],[6] has been extended herein to account for systems that can be represented, generally,

as an underdetermined system of SDEs coupled with a set of ODEs. Interpreting the latter as constraint

equations leads to a constrained variational problem to be solved for the most probable path. To this aim, a

direct functional minimization formulation has been applied, coupled with a standard Rayleigh-Ritz solution120

approach (see [5],[12]). This has reduced the constrained variational problem to an ordinary constrained

optimization problem. It has been found that a nullspace solution approach is computationally efficient for

cases of linear constraints, whereas the augmented Lagrangian method (ALM) has performed satisfactorily for

cases of nonlinear constraints.

In the present work, the reliability of the methodology is demonstrated by two numerical examples; that125

is, a 2-DOF oscillator with Duffing nonlinearities and linear constraint equation, and a 2-DOF oscillator with

Duffing nonlinearities in the constraint equation as well. Comparisons with pertinent MCS data demonstrate

a high degree of accuracy.

10



(a) MCS - t = 1 s (b) WPI - t = 1 s (c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 6: Joint response PDF p(x2, ẋ2) of a partially forced 2-DOF nonlinear oscillator with nonlinear constraints at t = 1 s and

t = 3 s.
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