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Abstract

A methodology based on the Wiener path integral technique (WPI) is de-

veloped for stochastic response determination and optimization of a class of

nonlinear electromechanical energy harvesters. To this aim, first, the WPI tech-

nique is extended to address the particular form of the coupled electromechanical

governing equations, which possess a singular diffusion matrix. Specifically, a

constrained variational problem is formulated and solved for determining the

joint response probability density function (PDF) of the nonlinear energy har-

vesters. This is done either by resorting to a Lagrange multipliers approach,

or by utilizing the nullspace of the constraint equation. Next, the herein ex-

tended WPI technique is coupled with an appropriate optimization algorithm

for determining optimal energy harvester parameters. It is shown that due to

the relatively high accuracy exhibited in determining the joint response PDF,

the WPI technique is particularly well-suited for constrained optimization prob-

lems, where the constraint refers to low probability events (e.g. probabilities

of failure). In this regard, the WPI technique outperforms significantly an al-

ternative statistical linearization solution treatment commonly utilized in the

literature, which fails to capture even basic features of the response PDF. This

inadequacy of statistical linearization becomes even more prevalent in cases of
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nonlinear harvesters with asymmetric potentials, where the response PDF devi-

ates significantly from the Gaussian. Several numerical examples are included,

while comparisons with pertinent Monte Carlo simulation data demonstrate the

robustness and reliability of the methodology.

Keywords: energy harvesting; path integral; stochastic dynamics; nonlinear

system; optimization

1. Introduction

Vibratory energy harvesters [1–3] have flourished in recent years as an al-

ternative to common energy sources such as batteries. The rationale behind

energy harvesters is that compact and scalable electronic devices, such as wire-

less sensors [4, 5] and medical implants [6], are designed to function even with5

very low (sub-milliwatt) power levels. In this regard, energy harvesters aim at

converting any available ambient energy into electricity, and eventually power-

ing and enabling the autonomous operation of such devices. In general, energy

harvesters exploit the ability of active materials (e.g. piezoelectric) and elec-

tromechanical coupling mechanisms to generate an electric potential in response10

to external excitations. A cantilever beam with piezoelectric patches attached

near its clamped end is one of the most widely used energy harvesters [3]. The

beam is subjected to environmental excitation causing large strains near the

clamped end, thus producing a voltage difference across the patches. Utilizing

an appropriate circuit, the electric potential is converted into current; therefore,15

mechanical energy is transformed into electrical.

Typically, energy harvesters have been modeled in the literature as linear

systems. In this regard, they have been designed (e.g. by tuning the first modal

frequency of the beam) to achieve resonance with a given a priori known de-

terministic (harmonic) excitation, and therefore maximize the energy output20

[7, 8]. Of course, any kind of deviation of the excitation from its pre-assumed

harmonic nature decreases the resonance phenomenon, and reduces the effi-

ciency and energy output of the energy harvester. Thus, to increase robustness
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and the coupling range between the excitation and the harvester, researchers

intentionally introduced nonlinearities to the design of the energy harvester [9],25

(e.g., via utilizing magnetic forces) resulting in a nonlinear restoring force. For

instance, in many applications the restoring force is proportional to the cube of

the deflection and such nonlinearities are well known to increase the effective

resonance bandwidth of the harvester, allowing for more efficient energy trans-

duction [3]. Further, most energy harvesters operate in tandem with structures30

and civil infrastructure systems (e.g. bridges), which are subjected to envi-

ronmental excitations that have random and even time-varying characteristics.

Thus, researchers have recently realized the need for modeling the excitations

as stochastic processes [10–14].

Obviously, the ultimate goal is to design and optimize an energy harvester for35

maximizing its energy output. The analysis and optimization of most harvesters

has been done by relying on steady-state analyses under deterministic harmonic

excitations [15]. Further, the few papers that consider stochastic excitations

almost exclusively utilize the maximization of the average (mean) harvested

power as the optimization criterion [16–18]. However, the suitability of alterna-40

tive performance measures was discussed in [19], and the need for considering

higher-order or peak energy (or voltage) statistics in the optimization process

was highlighted. In particular, knowledge of the voltage peak statistics, or the

probability the voltage remains above a certain level, could be used to safeguard

associated electronic circuits, or for an enhanced utilization of the capacitors,45

respectively. Furthermore, additional restrictions in terms of maximum dis-

placement of the mechanical oscillator may be required in realistic situations

due to limited available space, or to avoid potential mechanical failures. In this

regard, constraints may often relate to the probability that the voltage and/or

the displacement stay within prescribed limits. Overall, incorporation of such50

“extreme values” statistics as objectives and constraints in the energy harvester

optimization problem can lead, potentially, to a more robust and efficient de-

sign than what is currently the norm in the literature. A requirement for this,

however, is the complete stochastic characterization of the system response, i.e.,

3



knowledge of the joint response transition probability density function (PDF),55

and not only of the response mean and standard deviation. Thus, the standard

statistical linearization technique [20], which relies on a Gaussian response as-

sumption and has been widely employed to analyze and optimize such energy

harvesting systems [18, 21, 22], cannot possibly be used when low probability

events enter the optimization problem as requirements and constraints.60

In this paper, a methodology for stochastic response determination and op-

timization of nonlinear energy harvesters is developed based on the Wiener path

integral technique (WPI) [23–26, 26, 27]. To this aim, first, the WPI technique

is extended to account for the singular diffusion matrix related to the governing

equations. In this regard, the electrical equation is construed as a constraint,65

leading to a constrained variational problem to be solved either by Lagrange

multipliers [28], or by nullspace [29] based approaches. Next, the herein ex-

tended WPI technique, which exhibits significant accuracy in determining the

joint response PDF, is coupled with an appropriate optimization algorithm for

determining efficiently the optimal parameters of the energy harvester. Sev-70

eral numerical examples are included, while comparisons with pertinent Monte

Carlo simulation (MCS) data demonstrate the reliability and robustness of the

methodology. It is shown that, especially for optimization problems with con-

straints referring to low probability events, the WPI technique outperforms the

standard statistical linearization, which fails to capture basic features of the75

non-Gaussian response PDF, and in many cases violates the constraints.

2. Nonlinear electromechanical energy harvester

2.1. Modeling aspects

One of the most widely studied electromechanical energy harvesters is a

cantilever beam with piezoelectric patches attached near its clamped ends. As

discussed in detail in [3], the dynamics of such a system can be approximated by

the following general mathematical model of coupled electromechanical equa-
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tions, expressed in a non-dimensional form as

ẍ+ 2ζẋ+
dU(x)

dx
+ κ2y = w(t) (1a)

ẏ + αy − ẋ = 0 (1b)

where x denotes the response displacement and y represents the induced volt-

age in capacitative harvesters or the induced current in inductive ones. Further,80

ζ is the damping, κ is the coupling coefficient, α (referred to as the electrical

constant in the following) is defined as the ratio between the mechanical and

electrical time constants of the harvester (see [21]), and U(x) denotes the po-

tential function. Its derivative dU(x)
dx represents the restoring force, which is

nonlinear in general; see [3] for more details. Also, w(t) represents the exter-85

nal excitation, which is modeled as a Gaussian white noise stochastic process.

Details regarding the non-dimensionalization of the governing equations can be

found in [21] and [30].

In modeling the restoring force dU(x)
dx , a wide range of nonlinear behaviors

can be captured by the 3rd order polynomial

dU(x)

dx
= x+ λx2 + δx3 (2)

where λ and δ control the intensity of the quadratic and cubic nonlinear terms,

respectively, while the coefficient corresponding to the linear stiffness term is 190

as a result of the non-dimensionalization [21]. Further, considering the behavior

of the potential function U(x) that controls the essential dynamics of the system,

for δ ≥ 0, Eq. (2) leads to a bistable asymmetric potential for λ > 2
√
δ, to a

monostable asymmetric for λ ≤ 2
√
δ, and to monostable symmetric for λ = 0.

As shown in [21], for λ = 0 and Gaussian white noise excitation, the maximum95

mean harvested power is achieved for δ = 0, or in other words, the linear

system is optimum; see also [31–34] for a relevant discussion on the optimality

of linear systems under certain conditions. Furthermore, references [22] and

[30] demonstrated that utilizing nonlinear oscillators with symmetric bistable

potentials, i.e., λ = 0 and a restoring force of the form dU(x)
dx = −x+δx3, can be100

beneficial for maximizing the mean harvested power. In this regard, a question
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is posed naturally regarding the performance, in terms of harvesting efficiency,

of potential functions with asymmetries, i.e., λ 6= 0. This was addressed by He

and Daqaq [21], who studied monostable harvesters in the regime 0 ≤ λ ≤ 2
√
δ,

and determined their response statistics by employing a statistical linearization105

approach. It was shown that the maximum mean harvested power is achieved

for some δ > 0 and for the bistability limit λ = 2
√
δ.

In this paper, without loss of generality and taking into account the afore-

mentioned studies, the class of nonlinear energy harvesters with restoring forces

given by Eq. (2) with λ = 2
√
δ and δ ≥ 0 is considered. The excitation is mod-

eled as a stationary Gaussian white noise process with a constant power spec-

trum value S0, under which, the system response vector process q = [x, ẋ, y]T

starts from initial conditions, exhibits a transient phase, and eventually reaches

stationarity where the maximum response variance is observed. In this regard,

the mean harvested power Ph is proportional to the variance of the zero-mean

electrical quantity y and is given by

Ph = αE{y2} (3)

where E{.} represents the expectation operator.

2.2. Optimization aspects

From an optimal design perspective, the objective is typically articulated in110

the literature as maximizing the mean stationary harvested power for a given

excitation intensity S0. This can be formulated as an optimization problem

in the set of parameters {ζ, κ, α, δ} ⊆ R4
++, where R++ denotes the set of

positive real numbers. The complexity of the problem can be further decreased

by investigating the role of each parameter ζ, κ and α in the dynamics of the115

system.

Specifically, it can be readily seen from equations (1) and (3), that the

coupling coefficient κ has a monotonic effect on the harvested power. The

strongest the coupling between the mechanical and electrical systems, the largest

the variance of the electrical quantity y. As a result, κ should take the largest120
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value possible, and thus, can be excluded from the optimization problem. The

parameter ζ results from the non-dimensionalization of the original equations

(e.g. see [3]) and includes the mass, damping and stiffness coefficients of the

mechanical system. Therefore, it can be regarded as a scale parameter, which

is considered fixed because its value is dictated by physical constraints of the125

particular application. As a result, it is excluded from the optimization problem

as well.

On the other hand, the electrical constant α appears to affect the response

quantity y in a more complex manner than κ and ζ. It can be readily seen in Eq.

(1) that, for small values of α, ẏ approaches ẋ and thus, the quantity of interest

E{y2} is controlled essentially by the variance of the mechanical displacement

x. Further, for large α, the influence of ẏ becomes less significant rendering

E{y2} approximately proportional to the variance of the mechanical velocity

ẋ [35]. In this regard, α can be construed as a weighting factor, controlling

the correlation degree between y and each of the response quantities x and ẋ.

Therefore, it becomes evident that no apparent assumptions about optimal α

values can be made. Accordingly, for the parameter vector z = [α, δ] and for ζ,

κ and S0 fixed, the optimization problem can be formulated as

arg max
z∈Z

Ph(z) (4)

where Z ⊂ R2
++ is an effective domain of parameter values.

In practice, it is often desirable to apply additional design criteria that en-

force constraints related to the probability that y and/or x stay within pre-

scribed limits. Such a constraint can take the general form Pf < ε, where

the probability of failure Pf is typically related to an “extreme event” char-

acterized by a low probability of occurrence. For instance, Pf can be de-

fined as the probability that either |x| or |y| exceed some prescribed limit, i.e.

Pf = P (|x| > xlimit or |y| > ylimit). Taking such an additional design criterion

into account, the optimization problem in Eq. (4) needs to be reformulated as

arg max
z∈Z

Ph(z) s.t. Pf (z) ≤ ε (5)
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Note, however, that a requirement for addressing this problem, is the com-

plete stochastic characterization of the system response, i.e., knowledge of the130

joint response PDF, and not only of the response mean and variance. To this

aim, the WPI response determination technique is extended and applied herein

for addressing the constrained optimization problem of Eq. (5). It is noted

that the problem of Eq. (5) is significantly more complex than the standard

unconstrained problem of Eq. (4), which is typically addressed in the literature.135

3. Wiener Path integral solution technique overview

3.1. Standard formulation

One of the recently developed promising techniques in stochastic engineer-

ing dynamics relates to the concept of the Wiener path integral (WPI) [23].

The technique exhibits not only relatively high accuracy in determining the

joint response PDF, but also significant versatility as it can account for multi-

degree-of-freedom systems with various nonlinearity types [24], as well as for

systems with fractional derivative terms [27]. The essential aspects of the tech-

nique are delineated in the present section by considering the general class of

n-dimensional randomly excited structural/mechanical systems whose dynamics

is described by

D[q(t)] = w(t) (6)

In Eq. (6), D[.] denotes a nonlinear differential operator, q is the system

response, and w is a white noise stochastic excitation vector process with

E[w(t1)w(t2)] = Bδ(t2 − t1); δ(.) denotes the Dirac delta function and B

is a deterministic coefficient matrix given by

B =


2πS0 . . . 0

...
. . .

...

0 . . . 2πS0

 (7)

Next, relying on the mathematical framework of path integrals [36], the
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transition PDF p(qf , q̇f , tf |qi, q̇i, ti) can be written as [24]

p(qf , q̇f , tf |qi, q̇i, ti) =

∫
C{qi,q̇i,ti;qf ,q̇f ,tf}

W [q(t)][dq(t)] (8)

with {qi, q̇i, ti} denoting the initial state and {qf , q̇f , tf} the final state, and

qi = q(ti), qf = q(tf ), q̇i = q̇(ti) and q̇f = q̇(tf ). Eq. (8) represents a

functional integral over the space of all possible paths C{qi, q̇i, ti; qf , q̇f , tf},

W [q(t)] denotes the probability density functional of the stochastic process in

the path space and [dq(t)] is a functional measure. Further, the probability

density functional for the stochastic vector process q(t) pertaining to the system

of Eq. (6) is defined as (e.g., [24])

W [q(t)] = exp

− tf∫
ti

L (q, q̇, q̈) dt

 (9)

where L (q, q̇, q̈) denotes the Lagrangian functional. As noted previously, con-

sidering standard structural dynamical systems yields a differential operator

D[.] which contains up to second-order time derivatives of q (inertia term).

The corresponding Lagrangian functional is expressed as [24]

L(q, q̇, q̈) =
1

2
D[q]TB−1D[q] (10)

Note that Eq. (9) can be loosely interpreted as the probability assigned to each

and every possible path starting from {qi, q̇i, ti} and ending at {qf , q̇f , tf}.

Clearly, the largest contribution to the functional integral of Eq. (8) comes

from the trajectory qc(t) for which the integral in the exponential of Eq. (9) (also

known as stochastic action) becomes as small as possible; see [36] for instance.

According to calculus of variations (e.g., [37],[38]) this trajectory qc(t) with

fixed endpoints satisfies the extremality condition

δ

∫ tf

ti

L(q, q̇, q̈)dt = 0 (11)

which leads to the Euler-Lagrange (E-L) equations

∂L
∂qj
− ∂

∂t

∂L
∂q̇j

+
∂2

∂t2
∂L
∂q̈j

= 0, j = 1, ..., n (12)
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with the set of boundary conditions

qj(ti) = qj,i q̇j(ti) = q̇j,i

qj(tf ) = qj,f q̇j(tf ) = q̇j,f

j = 1, ..., n (13)

Next, solving equations (12)-(13) yields the n-dimensional most probable path,

qc(t), and thus, a single point of the system response transition PDF can be

determined as [24]

p(qf , q̇f , tf |qi, q̇i, ti) ≈ C exp

− tf∫
ti

L(qc, q̇c, q̈c)dt

 (14)

In Eq. (14), the normalization constant C can be computed by utilizing the

condition

∞∫
−∞

· · ·
∞∫
−∞

p(qf , q̇f , tf |qi, q̇i, ti)dx1,fdẋ1,f . . . dxm,fdẋm,f = 1 (15)

It can be readily seen by comparing equations (8) and (14) that in the approx-140

imation of Eq. (14) only one trajectory, i.e., the most probable path qc(t), is

considered in evaluating the path integral of Eq. (8). Regarding the degree of

this approximation, direct comparisons of Eq. (14) with pertinent MCS data

related to various engineering dynamical systems [24, 27] have demonstrated

satisfactory accuracy; see also [39].145

Further, note that instead of directly solving the derived E-L equations (12)-

(13), an alternative solution approach can be applied for determining the most

probable path qc(t). Specifically, since qc is an extremum for the functional

J (q) =

∫ tf

ti

L(q, q̇, q̈)dt, (16)

calculus of variations rules suggest that a direct functional minimization formu-

lation can be applied, which can be readily coupled with a standard Rayleigh-

Ritz solution approach (see [26, 27, 40]). In this regard, q is approximated by

q̂ = ψ +Rh ≈ q. (17)
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The function ψ(t) is chosen so that it satisfies the boundary conditions, while

the trial functions h(t) = [h0, h1, ..., hL−1]T should vanish at the boundaries,

i.e. h(ti) = h(tf ) = 0. R ∈ Rn×L is a coefficient matrix, where L is the

chosen number of trial functions considered. Clearly, there is a wide range of

options for the choice of functions ψ and h. In the ensuing analysis, the Hermite

interpolating polynomials

ψj(t) =

3∑
k=0

αj,kt
k (18)

are adopted, i.e., ψ = [ψ1, ψ2, ..., ψn]T , where the n × 4 coefficients αj,k are

determined by the n× 4 boundary conditions (13). For the trial functions, the

shifted Legendre polynomials given by the recursive formula

Pp+1(t) =
2p+ 1

p+ 1

(
2t− ti − tf
tf − ti

)
Pp(t)−

p

p+ 1
Pp−1(t), p = 1, 2, ... (19)

are employed, which are orthogonal in the interval [ti, tf ], with P0(t) = 1; and

P1(t) = (2t− ti − tf )/(tf − ti). The trial functions take the form

hl(t) = (t− ti)2(t− tf )2Pl(t). (20)

A practical advantage of the Rayleigh-Ritz method is that the variational

problem (functional minimization) degenerates to an ordinary minimization

problem of a function that depends on a finite number of variables [38]. Specif-

ically, the functional J (q), dependent on the n functions q(t), is replaced by

the function J(R), dependent on a finite number of n × L coefficients R. Ac-

cordingly, the extremality condition (11) is replaced by

∂J(R)

∂R
= 0 (21)

which represents essentially a set of nL nonlinear equations for the unknown

coefficients (parameters) R. Once solved numerically, the most probable path

qc is determined via Eq. (17).

3.2. Computational aspects

Considering fixed initial conditions (qi, q̇i) (i.e., system initially at rest),150

both approaches, i.e. the E-L equations ((12)-(13)) and the Rayleigh-Ritz so-
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lution scheme, yield a single point of the joint response PDF via the solution

of a deterministic boundary value problem (BVP). According to a brute-force

implementation of the WPI technique, choosing a time instant tf large enough

so that the response has reached stationarity, an effective domain of values is155

considered for the joint response PDF p(qf , q̇f , tf |qi, q̇i, ti). Next, discretizing

the effective domain using N points in each dimension, the joint response PDF

values are obtained corresponding to the points of the mesh. Specifically, for an

n-DOF system with 2n stochastic dimensions (n displacements and n velocities)

the number of BVPs to be solved is N2n. It is clear that the computational cost160

becomes prohibitive for relatively high-dimensional MDOF systems. However,

efficient implementations, such as the one developed by Kougioumtzoglou et

al. [25], can be utilized in conjunction with the WPI technique. Specifically,

employing a polynomial expansion for the joint response PDF yields a number

of BVPs to be solved equal to the number of the expansion coefficients. This165

implementation has been shown to follow approximately a power-law function of

the form ∼ (2n)l/l! (where l is the degree of the polynomial), which, depending

on the value of n, can be orders of magnitude smaller than N2n [25].

4. Extension of the Wiener path integral technique to account for

singular diffusion matrices: A constrained variational problem170

Taking into account the form of Eq. (1), it can be readily seen that a

straightforward application of Eq. (10) is not possible, as it would lead to

a singular matrix B. Thus, a modification is required to the WPI technique

presented in Sec. 3 to account for the special form of Eq. (1). In this regard,

consider Eq. (1a) as an under-determined stochastic differential equation (SDE)

with 2 unknowns (x and y), excited by the Gaussian white noise process w(t).

For this SDE, the Lagrangian can be expressed as

L(q, q̇, q̈) = L(x, y, ẋ, ẍ) =
1

4πS0

[
ẍ+ 2ζẋ+ x+ 2

√
δx2 + δx3 + κ2y

]2
(22)

Clearly, considering Eq. (22) alone is inadequate, as the dynamics described by

Eq. (1b) have so far been neglected. To proceed, Eq. (1b) is treated next as a
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constraint in the form

φ(q, q̇) = φ(y, ẏ, ẋ) = ẏ + αy − ẋ = 0 (23)

Eq. (22) in conjunction with Eq. (23) lead to a constrained variational problem,

which is addressed in the following either by Lagrange multipliers [41], or by

nullspace [29] based approaches.

4.1. Lagrange multipliers

According to the Lagrange multipliers solution approach [38, 42, 28, 43, 41,

44], the function q(t), for which the functional in Eq. (16) reaches an extremum

subject to the constraint of Eq. (23), satisfies the E-L equations corresponding

to the functional

J ∗ =

∫ tf

ti

[λ0L+ λ(t)φ] dt =

∫ tf

ti

L∗dt, (24)

where L∗ := λ0L+λ(t)φ, and λ0 and λ(t) being appropriately chosen scalar and175

function multipliers, respectively. The corresponding E-L equations become

∂L∗

∂x −
∂
∂t
∂L∗

∂ẋ + ∂2

∂t2
∂L∗

∂ẍ = 0 (25a)

∂L∗

∂y −
∂
∂t
∂L∗

∂ẏ + ∂2

∂t2
∂L∗

∂ÿ = 0 (25b)

together with the boundary conditions

x(ti) = xi, ẋ(ti) = ẋi, x(tf ) = xf , ẋ(tf ) = ẋf (26a)

y(ti) = yi, ẏ(ti) = ẋi − αyi, y(tf ) = yf , ẏ(tf ) = ẋf − αyf (26b)

Clearly, the boundary conditions for ẏ(t) in Eq. (26b) cannot be arbitrary, and

reflect the constraint relationship of Eq. (23).

The scalar λ0, multiplying the original Lagrangian L, in Eq. (24) can take

the value 0 or 1 [28]. Note that for λ0 = 0, the influence of L is eliminated, and180

the extremal “most probable path” is determined solely by the constraint equa-

tion, without considering the effect of the excitation. This solution is physically

non-realizable and falls under the category of abnormal extrema [45, 43, 41].
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Thus, the case λ0 = 1 is considered in the following, which corresponds to the

so-called normal extremal solutions.185

In this regard, for λ0 = 1, x(t), y(t) and λ(t) can be found by solving the

two E-L equations (25), in conjunction with the constraint Eq. (23) and with

the boundary conditions of Eq. (26). Specifically, employing a state variable

representation yields a response vector in the form [x, ẋ, ẍ, x(3), y, ẏ, ÿ, λ, λ̇]T so

that 9 boundary values are required for the solution of the BVP. These are190

the 8 boundary conditions in Eq. (26) together with an arbitrary [38] initial

value λ(0). It is noted that since independent boundary conditions are provided

for x, ẋ and y only, the proposed WPI methodology yields the 3-variate joint

PDF p(x, ẋ, y). According to Sec. 3.2, applying a brute force approach and

choosing a number of N = 30 spatial discretization points per dimension, yields195

303 = 27000 deterministic BVPs to be solved for determining the response PDF

p(x, ẋ, y). Alternatively, utilizing a 4th order polynomial expansion for the PDF

[25], the number of BVPs to be solved is reduced drastically to only
(
3+4
4

)
= 35;

thus, rendering the WPI technique computationally efficient.

4.2. Nullspace of constraint equations200

An alternative solution approach, which takes advantage of the linearity

of the constraint Eq. (23) in terms of the variables ẋ, y and ẏ, is delineated

next. In this regard, adopting the Rayleigh-Ritz scheme of Sec. 3, and utilizing

the polynomial expansion q̂ = ψ +Rh for q (see Eq. (17)), the optimization

problem is restricted within the space of solutions of φ(q̂, ˙̂q) = φ̂(t) = 0.205

Specifically, linearity of the constraint equation ensures that φ̂(t) is a poly-

nomial of degree L+4 in t (see equations (17) and (20)), with coefficients linear

in the 2L unknown expansion parameters R ∈ R2×L. Setting these polynomial

coefficients equal to zero, yields a set of L+4 linear equations with 2L unknown

variables. Of course, for any well-posed constrained optimization problem, the

number of independent constraints is smaller than the dimension of q. For the

herein concerned problem, this yields L + 4 < 2L, which provides the lower

bound L > 4 for the number L of Legendre polynomials used in the polynomial

14



expansion. Next, expressing the unknown parameters R ∈ R2×L as a vector

u ∈ Rp, where p = 2L, the aforementioned equations are cast as a linear system

in the form

Au = b (27)

where A ∈ Rs×p, b ∈ Rs and s = L + 4. This system is underdetermined

(since L > 4), while A might not have full row rank, i.e., rA ≤ s. For instance,

dependent rows can appear because some of the coefficients of the polynomials

φ̂(t) set to zero, might be zero anyway, leading to 0 = 0 equations.

It is now possible to restrict minimization of the objective function J = J(u),

where u ∈ Rp, to the set of solutions of Eq. (27) which lie on a lower dimensional

space of dimension p− rA. To elaborate further, consider solving one of the rA

independent equations for one unknown component of u and substituting it into

the rest rA − 1 equations and into the objective function J(u). Repeating this

process and eliminating one equation and one unknown at every step, eventually

decreases the number of equations to p − rA, while also accounting implicitly

for the constraints. More rigorously, the vector space U ⊆ Rp of solutions of

the system Au = 0, can be fully described with the aid of a basis S = [s1 s2

... sp−rA ] for the nullspace of A [46] where S ∈ Rp×(p−rA). In this regard, any

element u ∈ U can be represented by an element v ∈ V ⊆ Rp−rA as u = Sv.

Then the vector space Ub ⊆ Rp of solutions of Au = b can be obtained as an

affine transformation of U [47]. More specifically, the solutions u ∈ Ub of Eq.

(27) can be represented as u = Sv + up where up is any particular solution of

Eq. (27) [46], [47]; see also [48]. It becomes now possible to cast the original

constrained optimization problem

arg min
u∈Rp

J(u) subject to Au = b (28)

into the lower dimensional, unconstrained problem

arg min
v∈Rp−rA

J(Sv + up) (29)

which is solved by applying the optimality conditions

∂J(Sv + up)

∂v
= 0 (30)
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Note that the minimizer u∗ of Eq. (28) can be obtained by the minimizer v∗210

of Eq. (29) as u∗ = Sv∗ + up. Clearly, solving numerically the reformulated

unconstrained problem of Eq. (29) is significantly more efficient computationally

than addressing the corresponding constrained problem of Eq. (28) [29]. This

becomes particularly beneficial when the approach is integrated with the WPI

technique. It is emphasized, of course, that such a treatment is possible due to215

the linearity of the constraint equations. In a different, more general, case, the

Lagrange multipliers solution approach of Sec. 4.1 can be adopted.

5. Numerical Examples

To demonstrate the efficiency and accuracy of the proposed technique for

analyzing and optimizing energy harvesting systems, a mono-stable asymmet-220

ric harvester (λ = 2
√
δ, δ ≥ 0) described by equations (1),(2) is considered

in this section. First, utilizing the herein extended WPI technique of Sec. 4,

the stationary joint response PDF p(x, ẋ, y) is determined. The corresponding

marginal PDFs are compared both with pertinent MCS data, and with PDF

estimates based on a statistical linearization treatment [20]. It is shown that225

due to the Gaussian response assumption, the standard statistical linearization

implementation (which has been widely utilized for response analysis of energy

harvesters described by Eq. (1) [18, 21, 22]) cannot possibly determine accu-

rately the tails of the response PDFs. Thus, it cannot be used in conjunction

with optimization problems such as Eq. (5), where the constraint refers to230

low probability events. Next, optimal energy harvester designs are obtained by

using the aforementioned WPI technique in conjunction with Eq. (3) as the ob-

jective function of a global optimization algorithm, constrained via a prescribed

probability of failure, as in Eq. (5).

5.1. Energy harvester stochastic response analysis235

5.1.1. Linear system

The linear system (δ = 0), for which an exact solution exists (i.e., Gaussian

response PDF [11]), is considered first. In this regard, the stationary marginal
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response PDFs for ζ = 0.1, κ = 0.65, α = 0.8, δ = 0 and S0 = 0.05 determined

via the WPI technique are shown in Fig. 1, and compared with the exact240

solution. It can be readily seen that the WPI technique exhibits a high degree

of accuracy, while there is practically no difference between the results produced

by the Rayleigh-Ritz-nullspace (Sec. 4.2) and by the Lagrange multipliers (Sec.

4.1) approaches. Thus, the Rayleigh-Ritz-nullspace approcah is utilized in the

following examples, as it is computationally more efficient.245
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Figure 1: Stationary marginal response PDFs of a linear energy harvester with ζ = 0.1,

κ = 0.65, α = 0.8, δ = 0 and S0 = 0.05. Solid black line: Gaussian PDF - Exact solution

Dotted line with “x”: WPI Rayleigh-Ritz-nullspace approach with 7 Legendre polynomials,

Dotted line with “o”: WPI E-L equations - Lagrange multipliers approach.

For the chosen value of the electrical constant (α = 0.8), which is neither too

small (→ 0), nor too large (→∞), it is anticipated by observing Eq. (1b), that

the response of the electrical quantity y is correlated with both the mechanical

displacement x and velocity ẋ, as discussed in Sec. 2. Indeed, this is depicted

in the joint PDFs p(y, x) and p(y, ẋ), shown in figures 2a and 2b, respectively.250
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(a) p(y, x) (b) p(y, ẋ) (c) p(x, ẋ)

Figure 2: Stationary joint response PDFs of a linear energy harvester with ζ = 0.1, κ = 0.65,

α = 0.8, δ = 0 and S0 = 0.05 determined by the WPI Rayleigh-Ritz-nullspace approach with

7 Legendre polynomials.

Further, as the value of α increases, y is expected to become more correlated

with ẋ and less correlated with x (see Eq. (1b)). Indeed, this is depicted in

figures 3a and 3b, where the stationary joint response PDFs p(y, x) and p(y, ẋ)

are shown, respectively, for the energy harvester with the same parameters as

in Fig. 2, but with a larger electrical constant α = 3.255

(a) p(y, x) (b) p(y, ẋ) (c) p(x, ẋ)

Figure 3: Stationary joint response PDFs of a linear energy harvester with ζ = 0.1, κ = 0.65,

α = 3.0, δ = 0 and S0 = 0.05 determined by the WPI Rayleigh-Ritz-nullspace approach with

7 Legendre polynomials.

5.1.2. Nonlinear system

The nonlinear energy harvester with mono-stable asymmetric potential and

parameters ζ = 0.1, κ = 0.65, α = 0.8, δ = 0.2 and S0 = 0.05 is consid-

ered next. The marginal stationary response PDFs of this energy harvester

are shown in Fig. 4, where the WPI based solutions are compared both with260
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pertinent MCS data, and with solutions obtained by applying the statistical

linearization method [20]. Clearly, because of the fundamental assumption of a

Gaussian response PDF, a standard statistical linearization treatment fails to

capture, not only the tails, but also basic features of the response PDFs. Indeed,

considering the response PDF of x in Fig. 4a, it is seen that while the WPI265

technique exhibits a high degree of accuracy, the statistical linearization fails to

capture the asymmetric shape due to the x2 term in the nonlinear restoring force

of Eq. (2). Note that this inadequacy of statistical linearization becomes sig-

nificant from an optimization perspective as well, especially when a constrained

optimization problem such as the one in Eq. (5) is considered. In particular, if270

maximizing E{y2} is the only objective to be taken into account as in Eq. (4),

then statistical linearization could potentially provide with relatively accurate

results as suggested by the accuracy degree shown in Fig. 4b related to the PDF

of y. However, if a more sophisticated optimization strategy is sought for, such

as the one in Eq. (5) with a constraint of the form Pf = P (|x| > xlimit) < ε,275

then satisfactory accuracy in estimating the tails of the PDF of x is obviously

required. As clearly shown in Fig. 4a, this is achieved by the WPI technique,

but not by a statistical linearization treatment.
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Figure 4: Stationary marginal response PDFs of a nonlinear energy harvester with ζ = 0.1,

κ = 0.65, α = 0.8, δ = 0.2 and S0 = 0.05. Solid gray line: MC - 10000 realizations, Solid

black line: Statistical linearization, Dotted line with “x”: WPI Rayleigh-Ritz-nullspace

approach with 7 Legendre polynomials.

Further, the significant effect of nonlinearities on the stationary joint re-
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sponse PDFs can be readily seen by comparing Fig. 5 with Fig. 2.280

(a) p(y, x) (b) p(y, ẋ) (c) p(x, ẋ)

Figure 5: Stationary joint response PDFs of a nonlinear energy harvester with ζ = 0.1,

κ = 0.65, α = 0.8, δ = 0.2 and S0 = 0.05 obtained by the WPI Rayleigh-Ritz-nullspace

approach with 7 Legendre polynomials.

5.2. Energy harvester optimization with constraints

The constrained optimization problem of Eq. (5) is considered in this sec-

tion. For this problem, the objective function Ph(z) with z = [α, δ]T is Eq. (3);

thus, a procedure for calculating E{y2} is required. Additionally, accounting

for the constraint that the probability of failure does not exceed a prescribed285

threshold ε, requires knowledge of the joint response PDF. In this regard, the

extended WPI technique developed in Sec. 4 in conjunction with the Rayleigh-

Ritz-nullspace approach of Sec. 4.2 is employed next. Comparisons with a

statistical linearization treatment are included as well, demonstrating the limi-

tations and incapability of statistical linearization to handle constraints related290

to low probability events, as anticipated by examining Fig. 4a.

Two failure scenarios x < xlimit and |x| > xlimit are considered, and the

corresponding probabilities of failure are defined as

Pf = P (x < xlimit) =

∫ xlimit

−∞
ps(x)dx (31)

Pf = P (|x| > xlimit) =

∫ −xlimit

−∞
ps(x)dx+

∫ ∞
xlimit

ps(x)dx (32)

respectively, where ps(x) is the stationary marginal PDF of the mechanical dis-

placement x. For the solution of the corresponding constrained optimization
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problem (see Eq. (5)), a penalty approach is utilized. This yields an uncon-

strained problem with the modified objective function Ph,ε(z) = 1ε(z)Ph(z)

where z = [α, δ]T and 1ε is an indicator function defined as

1ε(z) =

0, Pf (z) ≥ ε

1, otherwise

(33)

Taking into account that information regarding the gradient of Ph,ε(z) is not

available in general, the gradient-free Generalized Pattern Search (GPS) opti-

mization algorithm is utilized next [49]. It is noted that the GPS algorithm was

further extended in [50] to account for bound constraints, while no assumptions295

about the differentiability and continuity of the objective function are required

[51].

First, the performance of the GPS algorithm is assessed by comparisons with

brute-force full grid evaluations of the objective function Ph,ε(z) by relying on

statistical linearization. In this regard, a full grid computation of PSLh,ε (α, δ) in300

the interval {α, δ} ⊂ [0.5, 1.5]× [0, 0.5] with a mesh size of 0.007 and parameter

values ζ = 0.1, κ = 0.65 and S0 = 0.05, is presented in Fig. 6, with the

constraint Pf = P (x < −3.0) ≤ 10−2, showing the existence of a global optimum

point.
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(a) 3D plot (b) overview plot

Figure 6: Stationary mean harvested power Ph,ε obtained by statistical linearization with

constraint of the form of Eq. (31), and parameters xlimit = −3.0 and ε = 10−2. Full grid

computation with mesh size 0.007 required 10296 objective function evaluations: (αopt, δopt) =

(1.0600, 0.1890), PSLh,ε (αopt, δopt) = 0.1850 and Pf (αopt, δopt) = 0.009864.

It can be readily seen that multiplication with 1ε, introduces a discontinuity305

to the objective function. Convergence of the GPS algorithm, however, does not

assume continuity [51], and thus, the algorithm is expected to exhibit satisfac-

tory performance in this particular discontinuous optimization problem. To test

the validity of the above argument, the GPS algorithm is employed to solve the

same problem and the results presented in Fig. 7 exhibit practically the same310

accuracy as the full grid computation. Note, however, that approximately only

∼ 0.5% of the objective function evaluations used in the full grid computation

are required by the GPS algorithm, rendering the overall optimization scheme

computationally efficient.
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Figure 7: Stationary mean harvested power Ph,ε obtained by statistical linearization with con-

straint of the form of Eq. (31), and parameters xlimit = −3.0 and ε = 10−2. GPS optimiza-

tion required 164 objective function evaluations to converge: (αopt, δopt) = (1.0580, 0.1907),

PSLh,ε (αopt, δopt) = 0.1853 and Pf (αopt, δopt) = 0.009987.

0

0.05

0.4 1.5

0.1

0.15

0.2

0.2

1

0 0.5

(a) 3D plot

0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

(b) overview plot

Figure 8: Stationary mean harvested power Ph,ε obtained by WPI with constraint of the

form of Eq. (31), and parameters xlimit = −3.0 and ε = 10−2. GPS optimization

required 144 objective function evaluations to converge: (αopt, δopt) = (0.9874, 0.0625),

PWPI
h,ε (αopt, δopt) = 0.1689 and Pf (αopt, δopt) = 0.009981.

Finally, the optimization results obtained by the WPI technique are shown315

in Fig. 8, revealing the significant but anticipated difference between the WPI

and the linearization based optimal designs. This is attributed primarily to

the incapability of statistical linearization to capture accurately the tails of the
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Constraint: Pf = P (x < −3.0) ≤ 10−2

WPI optimum Stat. Lin. optimum

(α, δ) = (0.9874,0.0625) (α, δ) = (1.0580,0.1907)

Ph 0.16886 0.18530

Pf 0.00998 0.00999

MCS

Ph 0.17021 0.17731

Pf 0.00932 0.03664

Table 1: Assessment of the WPI and statistical linearization based optima using MCS with

50000 realizations.

response PDF, which are related to the constraint of Eq. (31). The above

argument is corroborated further by Table 1, where the WPI and linearization320

based optimal designs are assessed by using MCS. In particular, the WPI based

optimum design yields a probability of failure of 0.00932, which is very close

to the prescribed threshold (10−2). On the other hand, the linearization based

optimum yields a probability of failure Pf = 0.03664 that is significantly larger

than 10−2. Thus, the statistical linearization based optimal design violates325

the imposed constraint, rendering the technique unsuitable for handling low

probability events.

Similar conclusions can be drawn if a more conservative failure event, e.g.

x < −2.0 is considered. The optimal WPI and linearization based designs are

shown in Table 2, where it is observed that the optimal δ values are reduced330

compared to the values in Table 1. As anticipated, this “stricter” constraint

promotes a system behavior closer to linear. Similarly as in Table 1, MCS

data in Table 2 based on the optimal designs demonstrate the relatively high

accuracy degree of the WPI technique, as well as the inadequacy of statistical

linearization to satisfy the imposed constraint.335

As the nonlinearity magnitude δ increases, the asymmetry degree of the

marginal PDF of x increases as well. Thus, the shapes of the left and the
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Constraint: Pf = P (x < −2.0) ≤ 10−2

WPI optimum Stat. Lin. optimum

(α, δ) = (1.1121,0.0310) (α, δ) = (1.1220,0.1002)

Ph 0.16572 0.17411

Pf 0.00999 0.00999

MCS

Ph 0.16926 0.17185

Pf 0.00996 0.07382

Table 2: Assessment of the WPI and statistical linearization based optima using MCS with

50000 realizations.

right PDF tails become substantially different (see Fig. 4a). For this reason, it

is expected that statistical linearization, which assumes a symmetric Gaussian

response PDF, will perform poorly in cases of constraints of Eq. (32) referring340

to both tails of the PDF. Indeed, for xlimit = 2.0 in Eq. (32), the corresponding

WPI and statistical linearization based optimal designs are assessed by using

MCS and the results are shown in Table 3. It is observed, that due to the

relatively “steep” right tail of the PDF of x, the WPI optimum designs for

the failure events x < −2.0 and |x| > 2.0 are identical, i.e. the probability345

P (x > 2.0) is zero. In the statistical linearization based optimization, however,

the two failure events lead to slightly different designs because the Gaussian

response PDF of x is not steep enough at the right tail leading to P (x > 2.0) > 0.

In a similar manner as in the previous examples, the statistical linearization

based optimal design violates again the imposed constraint.350

6. Concluding remarks

A methodology based on the WPI technique has been developed for deter-

mining the response of a class of nonlinear electromechanical energy harvesters

subject to Gaussian white noise excitation. In this regard, the WPI technique

[23–25] has been extended herein to account for a singular diffusion matrix355
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Constraint: Pf = P (|x| > 2.0) ≤ 10−2

WPI optimum Stat. Lin. optimum

(α, δ) = (1.1121,0.0310) (α, δ) = (1.1244,0.0969)

Ph 0.16572 0.17382

Pf 0.00999 0.00999

MCS

Ph 0.16926 0.17114

Pf 0.00996 0.07072

Table 3: Assessment of the WPI and statistical linearization based optima using MCS with

50000 realizations.

present in the governing equations. Specifically, treating the coupled electrome-

chanical equations as an “underdetermined” SDE in conjunction with a con-

straint equation has yielded a constrained variational problem. This has been

solved either via a Lagrange multipliers approach, or by utilizing the nullspace

of the constraint equation. It has been shown that the WPI technique exhibits360

satisfactory accuracy in determining the joint response PDF as compared with

pertinent MCS data, and significantly outperforms an alternative statistical

linearization treatment. Indeed, the inadequacy of statistical linearization in

capturing even the basic features of the response PDF becomes more prevalent

in nonlinear harvesters with asymmetric potentials, where the response PDF365

deviates significantly from the Gaussian.

Next, the herein extended WPI technique has been coupled with an appro-

priate optimization algorithm for determining optimal parameters for the energy

harvester. In particular, a GPS algorithm [51] has been employed, and has been

shown to converge to the global optimum even for the case of a discontinuous370

objective function. This appears when a constrained optimization problem is

considered with constraints referring to probabilities of failure. For such cases,

where relatively high accuracy in determining the response PDF tails is re-

quired, optimization based on statistical linearization yields, in general, either
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sub-optimal solutions or solutions that violate the constraint.375
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