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Abstract

The computational efficiency of the Wiener path integral (WPI) technique for
determining the stochastic response of diverse dynamical systems is enhanced
by exploiting recent developments in the area of sparse representations. Specif-
ically, an appropriate basis for expanding the system joint response probability
density function (PDF) is utilized. Next, only very few PDF points are deter-
mined based on the localization capabilities of the WPI technique. Further,
compressive sampling procedures in conjunction with group sparsity concepts
and appropriate optimization algorithms are employed for efficiently determin-
ing the coefficients of the system response PDF expansion. It is shown that the
herein developed enhancement renders the technique capable of treating read-
ily relatively high-dimensional stochastic systems. Two illustrative numerical
examples are considered. The first refers to a single-degree-of-freedom Duff-
ing oscillator exhibiting a bimodal response PDF. In the second example, the
20-variate joint response transition PDF of a 10-degree-of-freedom nonlinear
structural system under stochastic excitation is determined. Comparisons with
pertinent Monte Carlo simulation data demonstrate the accuracy of the en-
hanced WPI technique.

Keywords: path integral, nonlinear system, stochastic dynamics, sparse
representations, compressive sampling

1. Introduction1

Response determination methodologies based on Monte Carlo simulation2

(MCS) and its variants (e.g., [1, 2]) are considered among the most versatile3

tools in the area of stochastic engineering dynamics. However, for large scale4

complex systems, these approaches can be computationally prohibitive. Exten-5

sive research in the field during the past few decades has shown that alternative6
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approximate analytical and/or numerical schemes offer efficient ways to address7

a broad class of problems. State-of-the-art semi-analytical techniques for deter-8

mining the response of stochastic dynamical systems include moments equations9

and statistical linearization [3–5], stochastic averaging schemes [6], probability10

density evolution methodologies [7], Fokker-Planck equation solution techniques11

[8], as well as numerical schemes based on discretized versions of the Chapman-12

Kolmogorov equation [9–11]. Additional well-established methodologies relate13

to stochastic reduced order models, stochastic Galerkin and collocation schemes14

(e.g., [12, 13]), as well as techniques based on dynamically orthogonal field equa-15

tions [14]. Nevertheless, solving high-dimensional nonlinear stochastic differen-16

tial equations (SDEs) remains a persistent challenge in the field of engineering17

dynamics.18

One of the recently developed promising techniques in stochastic engineer-19

ing dynamics relates to the concept of the Wiener path integral (WPI) [15].20

Path integral techniques have proven to be potent tools in theoretical physics,21

with applications ranging from superfluidity to quantum chromodynamics (e.g.,22

[16]). The notion of path integral, which generalizes integral calculus to func-23

tionals, was introduced by Wiener [17] and by Feynman [18], independently. Re-24

cently, an approximate WPI based technique has been developed for determining25

the stochastic response of nonlinear and/or hysteretic multi-degree-of-freedom26

(MDOF) structural systems [19]. The technique exhibits significant versatil-27

ity and can account even for systems endowed with fractional derivative terms28

[20]. Furthermore, it has been extended for addressing certain one-dimensional29

mechanics problems with random material/media properties [21], while prelimi-30

nary results towards an error quantification analysis can be found in [22]. From31

a computational efficiency perspective, recent work by Kougioumtzoglou et al.32

[23] reduced the computational complexity by, potentially, several orders of mag-33

nitude as compared to the original formulation and numerical implementation34

of the technique.35

The objective of this paper is to further enhance the computational effi-36

ciency of the WPI technique by exploiting recent developments in the area of37

sparse representations. Indicatively, sparse expansions of multivariate polyno-38

mials have been recently used for numerically solving stochastic (partial) dif-39

ferential equations [24–26]. In this paper, compressive sampling procedures40

are employed in conjunction with group sparsity concepts and appropriate opti-41

mization algorithms for decreasing drastically the computational cost associated42

with determining the system response probability density function (PDF). It is43

shown that the herein developed enhancement renders the technique capable of44

treating readily relatively high-dimensional stochastic systems. Two illustrative45

numerical examples are considered. The first refers to a single-degree-of-freedom46

Duffing oscillator exhibiting a bimodal response PDF. In the second example,47

the 20-variate joint response transition PDF of a 10-DOF nonlinear structural48

system under stochastic excitation is determined. Comparisons with pertinent49

MCS data demonstrate the accuracy of the enhanced WPI technique.50
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2. Wiener Path Integral Technique51

2.1. Wiener Path Integral formalism52

A wide range of problems in engineering mechanics and dynamics can be53

described by stochastic equations of the form54

F [x] = w (1)

where F [.] represents an arbitrary nonlinear differential operator; w denotes55

the external excitation; and x is the system response to be determined. It is56

noted that Kougioumtzoglou [21] has shown recently that the WPI technique57

can address not only problems subject to stochastic excitation w(t), but also58

a certain class of one-dimensional mechanics problems with stochastic media59

properties; that is, stochasticity is embedded in the operator F [.]. Nevertheless,60

for the purpose of this paper, and without loss of generality, anm-DOF nonlinear61

dynamical system with stochastic external excitation is considered herein in the62

form63

Mẍ + Cẋ + Kx + g(x, ẋ) = w(t) (2)

where x is the displacement vector process (xT = [x1 . . . xm]); M , C, K corre-64

spond to the m×m mass, damping and stiffness matrices, respectively; g(x, ẋ)65

denotes an arbitrary nonlinear vector function; and w(t) is a white noise stochas-66

tic vector process with the power spectrum matrix67

Sw =

S0 . . . 0
...

. . .
...

0 . . . S0

 (3)

Next, relying on the mathematical framework of path integrals [16], the68

transition PDF p(xf , ẋf , tf |xi, ẋi, ti) can be written as [19]69

p(xf , ẋf , tf |xi, ẋi, ti) =

∫
C{xi,ẋi,ti;xf ,ẋf ,tf}

W [x(t)][dx(t)] (4)

with {xi, ẋi, ti} denoting the initial state and {xf , ẋf , tf} the final state, and70

xi = x(ti), xf = x(tf ), ẋi = ẋ(ti) and ẋf = ẋ(tf ). The integral of Eq. (4) rep-71

resents a functional integration over the space of all possible paths C{xi, ẋi, ti;xf , ẋf , tf},72

W [x(t)] denotes the probability density functional of the stochastic process in73

the path space and [dx(t)] is a functional measure. Further, the probability den-74

sity functional for the stochastic process x(t) pertaining to the MDOF system75

of Eq. (2) is defined as (e.g., [19])76

W [x(t)] = exp

− tf∫
ti

L (x, ẋ, ẍ) dt

 (5)
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where L (x, ẋ, ẍ) denotes the Lagrangian functional given as77

L (x, ẋ, ẍ) =
1

2
(Mẍ + Cẋ + Kx + g(x, ẋ))

T
B−1 × . . .(

Mẍ + Cẋ + Kx + g(x, ẋ)
)

(6)

where78

B =

2πS0 . . . 0
...

. . .
...

0 . . . 2πS0

 (7)

Note that Eq. (5) can be loosely interpreted as the probability assigned to each79

and every possible path starting from {xi, ẋi, ti} and ending at {xf , ẋf , tf}.80

Clearly, the largest contribution to the functional integral of Eq. (4) comes81

from the trajectory xc(t) for which the integral in the exponential of Eq. (5)82

(also known as the stochastic action) becomes as small as possible; see, for83

instance, [16]. According to calculus of variations (e.g., [27]) this trajectory84

xc(t) with fixed endpoints satisfies the extremality condition85

δ

tf∫
ti

L(xc, ẋc, ẍc)dt = 0 (8)

which yields the system of Euler-Lagrange (E-L) equations86

∂L
∂xc,1

− ∂
∂t

∂L
∂ẋc,1

+ ∂2

∂t2
∂L

∂ẍc,1
= 0

...
∂L

∂xc,m
− ∂

∂t
∂L

∂ẋc,m
+ ∂2

∂t2
∂L

∂ẍc,m
= 0

(9)

together with 4×m boundary conditions87

xc,1(ti) = x1,i, ẋc,1(ti) = ẋ1,i, xc,1(tf ) = x1,f , ẋc,1(tf ) = ẋ1,f
...

xc,m(ti) = xm,i, ẋc,m(ti) = ẋm,i, xc,m(tf ) = xm,f , ẋc,m(tf ) = ẋm,f

(10)

Next, solving Eqs. (9)-(10) yields the m-dimensional most probable path, xc(t),88

and thus, a single point of the system response transition PDF can be deter-89

mined as [19]90

p(xf , ẋf , tf |xi, ẋi, ti) ≈ C exp

− tf∫
ti

L(xc, ẋc, ẍc)dt

 (11)

In Eq. (11), the normalization constant C can be determined by utilizing the91

condition92

∞∫
−∞

· · ·
∞∫
−∞

p(xf , ẋf , tf |xi, ẋi, ti)dx1,fdẋ1,f . . . dxm,fdẋm,f = 1 (12)
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It can be readily seen by comparing Eqs. (4) and (11) that in the approx-93

imation of Eq. (11) only one trajectory, i.e., the most probable path xc(t), is94

considered in evaluating the path integral of Eq. (4). Regarding the degree of95

this approximation, direct comparisons of Eq. (11) with pertinent MCS data96

related to various engineering dynamical systems [19, 20] have demonstrated97

satisfactory accuracy; see also [22].98

Further, note that instead of solving the derived E-L Eqs. (9)-(10), an al-99

ternative solution approach can be applied for determining the most probable100

path xc(t). Specifically, a more direct functional optimization formulation for101

the expression
tf∫
ti

L(xc, ẋc, ẍc)dt can be applied, which can be readily combined102

with a standard Rayleigh-Ritz solution approach; see [20, 21] for more details.103

Overall, considering fixed initial conditions (xi, ẋi) typically (i.e., system ini-104

tially at rest), both approaches require the solution of a functional minimization105

problem for determining a single point of the joint response PDF. In the ensuing106

analysis, adopting a data analysis perspective, this procedure will be referred107

to as obtaining a measurement of the joint response PDF.108

2.2. Numerical Implementation109

Although the boundary value problem (BVP) of Eqs. (9)-(10) is amenable to110

a closed-form analytical solution for a linear dynamical system, i.e., g(x, ẋ) = 0,111

unfortunately this is not the case, in general, for nonlinear systems. Therefore,112

a numerical solution scheme needs to be implemented. In this regard, adopting113

a brute-force numerical solution approach, for each time instant tf an effective114

domain of values is considered for the joint response PDF p(xf , ẋf , tf |xi, ẋi, ti).115

Next, discretizing the effective domain using N points in each dimension, the116

joint response PDF values are obtained corresponding to the points of the mesh.117

More specifically, for an m-DOF system corresponding to 2m stochastic dimen-118

sions (m displacements and m velocities) the number of measurements required119

is N2m. Clearly, this demonstrates the high computational cost related to a120

brute force solution scheme implementation, especially for high-dimensional sys-121

tems.122

To address the above computational limitations, Kougioumtzoglou et al. [23]123

employed a polynomial expansion for the joint response PDF; thus, yielding the124

required number of PDF measurements equal to the number of the expansion125

coefficients. Further, it was shown that the computational cost follows a power-126

law function of the form ∼ (2m)
l
/l! (where l is the degree of the polynomial),127

which can be orders of magnitude smaller than N2m. Indicatively, the joint128

response PDF of a 10-DOF nonlinear dynamical system can be obtained with129

only 10,626 measurements by utilizing the polynomial approximation, whereas130

a brute force PDF domain discretization scheme would require 3020 measure-131

ments (for N = 30). However, even with the enhancement in computational132

efficiency proposed in [23], the related computational cost as a power law func-133

tion of the number of stochastic dimensions still restricts the applicability of134

the methodology to relatively low-dimensional systems. In this paper, further135
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enhancement in the computational efficiency of the WPI technique is achieved136

by employing sparse representations for the response PDF in conjunction with137

appropriate optimization algorithms.138

3. PDF Approximation and Sparse Representations139

3.1. Joint response PDF approximation140

The solution approach proposed by Kougioumtzoglou et al. [23] can be con-141

strued as a special case of expanding the joint response PDF by employing an142

appropriate basis. Specifically, without loss of generality and considering fixed143

initial conditions, the only variables describing the PDF at a time instant tf144

are xf and ẋf . Next, dropping the subscript f for simplicity, the joint response145

PDF is considered to be a square-integrable function, i.e., p(x, ẋ) ∈ L2(R2m).146

In this regard, p(x, ẋ) is approximated as147

p(x, ẋ) ≈ exp

(
n∑

i=1

cidi(x, ẋ)

)
(13)

where ci and di(x, ẋ), for i ∈ {1, . . . , n}, denote the expansion coefficients and148

the basis functions, respectively. Note that Eq. (13) can be written, alterna-149

tively, as150

log (p(x, ẋ)) ≈
n∑

i=1

cidi(x, ẋ) (14)

Further, following the selection of n points to perform the approximation,151

Eq. (14) takes the form of a linear system of n equations, i.e.,152

y0 = Dc (15)

where y0 ∈ Rn×1 is a vector of n points (measurements) of log (p(x, ẋ)), D ∈153

Rn×n is the basis matrix and c = [c1, . . . , cn]T ∈ Rn×1 is the expansion co-154

efficient vector. A WPI solution approach coupled with Eq. (15) has proved155

to drastically increase the computational efficiency of the WPI technique [23],156

as only n � N2m BVPs of the form of Eqs. (9)-(10) need to be solved for157

determining the joint response PDF.158

Nevertheless, it is demonstrated herein that further significant decrease in159

the computational cost is possible, if r � n measurements (or, in other words,160

BVPs to be solved) are utilized in Eq. (15). As shown in the following section,161

this yields an underdetermined system of equations that can be solved by relying162

on potent sparse representation concepts and tools.163

3.2. Sparse Representations and Compressive Sampling164

Compressive sampling (or compressive sensing) procedures are currently rev-165

olutionizing the signal processing field [28, 29]. In this section it is shown that by166

relying on compressive sampling concepts, and by exploiting additional informa-167

tion regarding p(x, ẋ), the approximation scheme of Eq. (13) can become even168
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more efficient computationally. The rationale of the herein proposed enhance-169

ment relates to using the least amount of joint response PDF measurements170

(i.e., r � n measurements obtained using the WPI technique) for computing171

the coefficient vector c.172

If only r < n measurements are obtained, Eq. (14) takes the form of an173

underdetermined linear system, which can be written as174

y = Φy0 = ΦDc = Ac (16)

In Eq. (16) Φ is an r × n matrix, also known as compressive sampling matrix175

[30] as it randomly deletes rows of y0 and D. The underdetermined system176

of Eq. (16) has either no solution, or an infinite number of solutions. Never-177

theless, in many cases there is additional information available concerning the178

coefficient vector c. For instance, if only a small number of its components,179

say k out of n components, are nonzero, then the problem can be regularized180

and there has been extensive research during the past decade on solution pro-181

cedures [31]. In particular, the sufficiently sparse (k � n) coefficient vector c182

is typically referred to as k-sparse. For such cases, searching for the vector ĉ183

with the least amount of elements that satisfies the condition y = Aĉ consti-184

tutes a non-convex optimization problem. Although this problem has a unique185

solution if A has certain desired properties and the number of measurements,186

r, is sufficiently large (e.g., [29]), it is known to be NP-hard (where NP stands187

for nondeterministic polynomial time), or in other words, there is no known188

algorithm for solving it efficiently (e.g., [32]).189

To address the above challenge, greedy algorithms can be used to find an190

approximate solution of the original non-convex problem [31]. Alternatively,191

the regularization constraint can be relaxed. For example, instead of seeking192

for the solution with the least amount of elements (or in other words, with193

the minimum `0-norm), the solution with the minimum `1-norm is sought for,194

alternatively. The problem becomes, therefore, convex and can be readily solved195

via standard numerical algorithms. However, the price to be paid for such196

a relaxation approach relates to increasing the number of measurements, r,197

required for a unique solution [29]; see also [33, 34].198

The main question in such problems relates to the properties that A should199

have in order for the aforementioned minimization problem to have a unique200

solution. Also, depending on the type of A selected, knowledge of the number201

of measurements for nearly exact recovery of the coefficient vector c is required in202

an a priori manner. The latter is known in the sparse representations literature203

as measurement bound, as a lower bound of r measurements guaranteeing nearly204

exact recovery of c is sought for; see, e.g., [35] for an introduction to the topic.205

In this regard, theoretical measurement bounds exist only for certain classes206

of matrices, e.g., for Gaussian matrices A, or random submatrices of Bounded207

Orthonormal Systems (BOS), such as Fourier, Wavelet and Legendre bases (see208

[28, 36, 37]). These bounds typically show how the order of magnitude of the209

required number of measurements r changes with increasing dimension n, and210

sparsity k. Therefore, they are mainly useful for comparing the performances211
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of various optimization algorithms and for providing with an indicative number212

of measurements. In Section 3.5, a more general approach is described, which213

is often used in practical applications.214

3.3. Sparse polynomial approximation and group sparsity215

Although approximation strategies based on univariate functions are con-216

sidered a well-developed topic, there is still active research in approximation217

schemes utilizing multivariate polynomials (see for example [38]). In the ensu-218

ing analysis, the monomial basis (e.g., [39]) is adopted for approximating the219

exponent of the joint response PDF in Eq. (13), and therefore a polynomial ap-220

proximation is constructed. The rationale for selecting the above basis relates221

to the fact that in cases of linear systems (i.e., g(x, ẋ) = 0) the joint response222

PDF is Gaussian, or, in other words, the function log (p(x, ẋ)) can be expressed223

exactly as a second-order polynomial. In the general case, where g(x, ẋ) 6= 0,224

p(x, ẋ) can be construed as a “perturbation” (small or large) from the Gaus-225

sian PDF, and thus, more monomials are required to enhance the approximation226

accuracy. The resulting polynomial is, consequently, of higher order.227

Further, to determine the polynomial approximation coefficients, n =
(
l+2m
2m

)
228

points from R2m need to be chosen, for an l-degree polynomial. These are the229

points at which the joint response PDF is sampled using the WPI technique and230

can be selected either randomly, or based on some kind of optimality criterion231

to enhance the robustness and accuracy of the approximation (see, e.g., [40]).232

As noted by Sommariva and Vianello [41], choosing “optimal” approximation233

points can, also, overcome certain numerical issues that typically accompany the234

monomial basis, such as the handling of resulting ill-conditioned Vandermonde235

matrices.236

Next, the monomials are ordered based on the graded lexicographical order,237

which for a 10-DOF dynamical system, for instance, would take the form238

1 ≺ x1 ≺ · · · ≺ ẋ10 ≺ x21 ≺ 2x1x2 ≺ x22 ≺ 2x1x3 ≺ 2x2x3 ≺ x23 · · · ≺ ẋ210︸ ︷︷ ︸
monomials of order 2

≺ . . .

(17)
Interestingly, this ordering scheme becomes important in the context of sparse239

polynomial approximation. Numerical examples involving arbitrary nonlinear240

systems of the form of Eq. (2) have demonstrated that the coefficients corre-241

sponding to the Gaussian part of the exponent, i.e., monomials of order 2, are242

always nonzero, whereas only few of the higher order coefficients are nonzero.243

In particular, the fact that Gaussian coefficients form a group, which is always244

active, serves as an additional piece of information that can be exploited. In the245

framework of sparse representations, this corresponds to group (or structured)246

sparsity, which is a term describing any kind of structure that the coefficient247

vector is known to have [42]. For the group sparsity to be considered and ex-248

ploited, the standard compressive sampling algorithms need to be modified as249

delineated in the following section. In this regard there are both convex (e.g.,250

[43]) and non-convex approaches (e.g., [44]).251
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3.4. Optimization Algorithm252

In this paper, the StructOMP greedy algorithm proposed by Huang et al. [44]253

is adopted for addressing the original non-convex problem. It can be construed254

as a generalization of the widely used Orthogonal Matching Pursuit (OMP)255

algorithm [45] and is preferred in the ensuing numerical examples over alterna-256

tive convex approaches, such as Group-LASSO [46]. In fact, for various typical257

stochastic dynamics problems of the form of Eq. (2), StructOMP has exhibited258

superior performance, both in terms of convergence rate and of approximation259

accuracy.260

Specifically, the input to StructOMP is the r-length measurement vector y,261

the r × n matrix A and the group structure (in the form of blocks) that the262

coefficient vector is anticipated to exhibit. In the herein considered applications263

the coefficient vector is separated into blocks, with every block corresponding264

to a single monomial, except for the second-order monomials that are grouped265

together. In standard sparse vectors, each component of the coefficient vector266

is considered to have complexity 1. This means that if this coefficient is active,267

then the coefficient vector will be less sparse by 1. In group sparse vectors each268

block is assigned a value that describes its complexity, which depends on its269

coding length (see the original paper by Huang et al. [44] for more details).270

Obviously, all the single monomials are assigned the same complexity value,271

whereas the grouped monomials are assigned higher complexity values than the272

single ones. Additionally, the total complexity of the coefficient vector, s, is the273

sum of the individual complexities of the blocks used to construct it.274

As in Section 3.2, c denotes the original coefficient vector that solves the275

system of Eq. (15) and ĉ the estimated one that solves the system of Eq. (16)276

using StructOMP. The algorithm selects which block reduces the approximation277

error278

err = ‖y −Aĉ‖2 (18)

per unit increase of complexity the most (this block is considered to provide the279

maximum progress to the algorithm), and then assigns values to the coefficients280

of the selected block via least squares regression. Subsequently, the algorithm281

finds the next block with the maximum progress and terminates either when282

err becomes smaller than a prescribed threshold or when the complexity of283

ĉ becomes larger than a prescribed value. For the Performance Analysis in284

Section 3.5 the latter is used, because the recovery error is measured for fixed285

complexity s. On the contrary, in the numerical examples in Section 4 the286

former is used, since the goal is to minimize the recovery error even if a less287

sparse (or more complex) coefficient vector is used in the expansion.288

3.5. Performance Analysis289

As noted in Section 3.4, the input to the StructOMP algorithm is the r-290

length measurement vector y, the r × n matrix A (where A = ΦD) and the291

group structure that the coefficient vector c is anticipated to have. Thus, a292

decision has to be made a priori regarding the number r of measurements,293

the degree of the multivariate polynomial to be used and the group structure294
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provided as input to StructOMP. First, the degree of the polynomial expansion295

is selected and the basis matrix D, and thus, A is constructed. Next, the296

group structure is formed using the group of second-order monomials, while the297

remaining monomials are considered separately as single monomials. Based on298

the rationale explained in Sections 3.3 and 3.4, since the group of second-order299

monomials is always active, the complexity of the coefficient vector is directly300

related only to the number of single monomials (NSM). In addition, given that301

the more complex the coefficient vector is the more measurements are needed302

for its accurate recovery, the number of measurements r depends solely on NSM.303

Therefore, the anticipated NSM has to be decided a priori and a tool is needed304

to find the corresponding required number of joint response PDF measurements305

r.306

In the absence of theoretical results, novel algorithms are typically tested307

with the aid of synthetic data before being used in practical applications [45, 47–308

49]. In this regard, based on the experimental set-up described below, empirical309

measurement bounds are determined, guaranteeing coefficient vector estimates310

with bounded error. In particular, for a monomial basis, coefficient vectors311

with synthetic data are created, with varying numbers of single monomials, and312

hence, with varying total complexity, s. Next, a value is assigned randomly (e.g.,313

from a Gaussian distribution; see [45]) to each nonzero component, and recovery314

of these vectors is attempted using StructOMP with only r < n measurements315

and coefficient vector complexity s. Finally, the average recovery error316

‖c− ĉ‖2
‖c‖2

(19)

is measured over 100 independent runs of the algorithm for each pair (r/n, s/r),317

and the result is shown in Fig. 1. It is observed that for every r/n there is a318

value of s/r above which sparse approximation becomes relatively inaccurate,319

or in other words, it changes phase (e.g., [47]). This is the reason why the320

plot in Fig. 1, illustrating the transition from highly accurate recovery (blue) to321

recovery with significant error (red), is commonly called Phase Diagram (e.g.,322

[47]).323
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Fig. 1. Phase Diagram for StructOMP using the Monomial Basis. The z-axis corresponds

to the average normalized `2 recovery error,
‖c−ĉ‖2
‖c‖2

, over 100 runs; the x-axis corresponds

to the ratio showing how much underdetermined the problem is, whereas the y-axis
corresponds to the ratio showing the level of complexity of the coefficient vector.

The quantities r/n and s/r in Fig. 1 are non-dimensional. Therefore, to324

use Fig. 1 for creating a measurement bounds plot for an m-DOF system, the325

actual dimension of the coefficient vector, n, is substituted into r/n. In this326

regard, the x-axis corresponds to the required number of measurements r, while327

the y-axis corresponds to the NSM of the coefficient vector. Specifically, for a328

10-DOF dynamical system of the form of Eq. (2) with 20 stochastic dimensions329

and considering a fourth-order polynomial expansion, n becomes 10,626. Fig. 2330

shows the estimated measurement bounds for n = 10,626 with the complexity331

s represented by the NSM of the coefficient vector. Indicatively, for a 10-DOF332

linear dynamical system of the form of Eq. (2), only the group of second-order333

monomials is active, because the joint response PDF is Gaussian, and thus,334

NSM is equal to zero. Therefore, as shown in Fig. 2 the coefficient vector for335

such a system can be recovered with less than r = 3,000 measurements of the336

joint response PDF using the WPI technique and with average normalized error337

less than 3%. For a 10-DOF nonlinear dynamical system of the form of Eq. (2),338

with a non-Gaussian response PDF, NSM is nonzero and as shown in Fig. 2 the339

number of measurements r has to increase accordingly. Further, a significant340

additional advantage of employing a sparse approximation treatment relates to341

the a priori knowledge about the sensitivity of the technique. As shown in Fig. 2342

an estimate of the expected increase of the error is readily available in case the343

coefficient vector sparsity is not predicted accurately.344
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Fig. 2. Measurement bounds for n = 10,626, corresponding to m = 10 and a fourth-order
polynomial approximation using StructOMP. The z-axis corresponds to the average

normalized `2 recovery error,
‖c−ĉ‖2
‖c‖2

, over 100 runs; the x-axis corresponds to the ratio

showing how much underdetermined the problem is, whereas the y-axis corresponds to the
ratio showing the level of complexity of the coefficient vector. The white solid line indicates
the required number of measurements for the error to be smaller than 3%, while the white
dashed lines show the deviation of the error by ±1%.

3.6. Wiener Path Integral computational efficiency enhancement345

For any m-DOF system of the form of Eq. (2), the joint response PDF can346

be described by Eq. (13) with a length n coefficient vector. Therefore, plots347

similar to Fig. 2 can be constructed for any dimension m. Such plots are useful348

for deciding on the number of required measurements and for providing an es-349

timate for the coefficient vector complexity. For instance, for an error less than350

3% and selecting the number of single monomials to be 10% of the Gaussian351

coefficients (see Fig. 2) the required number of measurements can be found for352

an arbitrary system of m DOFs. In this regard, Fig. 3 shows how the required353

number of measurements grows with increasing dimension of the system, m.354

This number is compared with the respective one required for cases where the355

formulation does not yield an underdetermined problem; that is, the number of356

measurements is equal to the number of coefficients in the expansion yielding357

a power law function of the form ∼ (2m)
l
/l! (see [23]). Further, the number358

of coefficients corresponding to a linear system response multivariate Gaussian359

PDF is included as well. It can be readily seen that the proposed approach360

can be orders of magnitude more efficient than both a brute-force numerical361

implementation of the WPI [19], and the approximate technique developed by362

Kougioumtzoglou et al. [23]. Most importantly, as shown in Fig. 3, this en-363

hancement in efficiency becomes even more prevalent as the number of DOFs364

(or equivalently the number of stochastic dimensions) increases; thus, rendering365

the herein proposed sparse representation approach indispensable, especially for366

high-dimensional systems. Of course, it is noted that Fig. 3 shows an indicative367

rate of growth of r. Systems with complex nonlinearities may require a larger368

number r. Thus, it is suggested to terminate the StructOMP algorithm only369

after the addition of a new block does not cause any further reduction of the370
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approximation error in Eq. (18) (see section 3.4 for more details).371

Fig. 3. Required measurements estimate for a general m-DOF system by utilizing the
developed sparse approximation technique, and compared with the technique in [23]; the
number of measurements required for a multivariate Gaussian PDF is included for
completeness.

3.7. Mechanization of the sparse polynomial approximation technique372

The mechanization of the developed technique involves the following steps:373

(a) Select the polynomial degree l and n =
(
l+2m
2m

)
points of R2m, either ran-374

domly (e.g., uniformly distributed), or by employing optimal point selection375

methodologies (see, e.g., [40]).376

(b) Create the basis matrix D.377

(c) Relying on Fig. 3, select only r out of these n points randomly (e.g., uni-378

formly distributed).379

(d) Evaluate log (p(x, ẋ)) at these r points using the WPI technique (Eq. (11)).380

(e) Estimate the coefficient vector c using StructOMP (or an alternative ap-381

propriate optimization algorithm).382

(f) The joint response PDF is given by Eq. (13).383

4. Numerical Examples384

4.1. SDOF Duffing oscillator with a bimodal response PDF385

As shown in Fig. 3 the advantage of the herein developed technique as com-386

pared to the implementation of [23] becomes more significant for relatively high-387

dimensional problems. However, to demonstrate the efficacy of the technique in388
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determining accurately even relatively complex response PDF shapes, an SDOF389

Duffing nonlinear oscillator that exhibits a bimodal response PDF is considered390

first. In this regard, assuming quiescent initial conditions, its equation of mo-391

tion is given by Eq. (2) with parameter values (M = 1; C = 1; K = −0.3;392

g = x3; and S0 = 0.0637). It is noted that an exact analytical expression exists393

for the stationary joint response PDF of this oscillator, given by [50]394

p(x, ẋ) = C exp

[
−1

0.0637π

(
−0.3x2

2
+
x4

4
+
ẋ2

2

)]
(20)

where C is a normalization constant. Thus, in addition to utilizing pertinent395

MCS data, the accuracy degree of the WPI technique can be assessed by direct396

comparisons with Eq. (20) as well. Next, in implementing the WPI technique397

summarized in Section 3.7, a 4-th degree polynomial is employed for approxi-398

mating the response transition PDF p(xf , ẋf , tf |xi, ẋi, ti). Following [23], the399

number of the expansion coefficients is n = 15, however, resorting to the herein400

proposed technique only r = 9 PDF measurements obtained by the WPI are401

used for determining the joint response PDF of the displacement x and the ve-402

locity ẋ at a given time instant. In Figs. 4 and 5, the joint PDFs referring to403

time instants t = 1s and t = 12s are shown, respectively. For the time instant404

t = 1s, which corresponds to the transient phase of the oscillator dynamics, the405

high accuracy degree of the technique is demonstrated in Fig. 4 by comparisons406

with MCS data (50,000 realizations). For the time instant t = 12s, which cor-407

responds to the stationary phase of the oscillator dynamics, the high accuracy408

degree is demonstrated by comparisons with the exact analytical expression409

given by Eq. (20). The marginal PDFs of x and ẋ are shown in Fig. 6 as well.410

Although the accuracy of the technique depends, in general, on the choice of411

the polynomial degree, it has been shown in this example that a 4-th degree412

polynomial is adequate in capturing even relatively complex PDF shapes, such413

as the bimodal.414
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Fig. 4. Joint PDF of x(t) and ẋ(t) at time t = 1s for a Duffing oscillator with a bimodal
response PDF, as obtained via the WPI technique (a - b); comparisons with MCS data -
50,000 realizations (c - d).
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Fig. 5. Joint PDF of x(t) and ẋ(t) at time t = 12s for a Duffing oscillator with a bimodal
response PDF, as obtained via the WPI technique (a - b); comparisons with the exact
stationary PDF of Eq. (20) (c - d).
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Fig. 6. Marginal PDFs of x(t) and ẋ(t) at time instants t = 1s and t = 12s for a Duffing
oscillator with a bimodal response PDF, as obtained via the WPI technique; comparisons
with MCS data (50,000 realizations) and the exact stationary PDF of Eq. (20).

4.2. 10-DOF oscillator with damping and stiffness nonlinearities415

To demonstrate the accuracy and efficiency of the proposed technique in416

handling relatively high-dimensional problems, a 10-DOF system of the form of417

Eq. (2) with cubic damping and stiffness nonlinearites is considered, where418

M =

m0 . . . 0
...

. . .
...

0 . . . m0

 , (21)

419

C =


2c0 −c0 . . . 0

−c0
. . .

. . .
...

...
. . .

. . . −c0
0 . . . −c0 2c0

 , (22)

420

K =


2k0 −k0 . . . 0

−k0
. . .

. . .
...

...
. . .

. . . −k0
0 . . . −k0 2k0

 , (23)
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and421

g(x, ẋ) =


ε1k0x

3
1 + ε2c0ẋ

3
1

0
...
0

 (24)

The system is excited by a white noise vector process, whose power spectrum422

matrix is given by Eq. (3), while the parameters values are (m0 = 1; c0 = 0.2;423

k0 = 1; ε1 = 1; ε2 = 1; and S0 = 0.5). In Figs. 7 and 8, the joint response PDFs424

for the displacement x1(t) and velocity ẋ1(t) corresponding to the first DOF ob-425

tained by the herein developed efficient WPI technique are plotted for two time426

instants t = 1s and t = 2s, respectively. These arbitrarily chosen time instants427

refer to the non-stationary (transient) phase of the system dynamics. Compar-428

isons with MCS based PDF estimates are included as well. Fig. 9 shows the429

marginal displacement and velocity PDFs at the above time instants. Figs. 10-430

12 show the respective results for x10(t) and ẋ10(t). In all cases, comparisons431

with pertinent MCS data demonstrate a high degree of accuracy for the sparse432

representation based WPI technique.433

Fig. 7. Joint PDF of x1(t) and ẋ1(t) at time t = 1s, as obtained via the WPI technique (a -
b); comparisons with MCS data - 50,000 realizations (c - d).
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Fig. 8. Joint PDF of x1(t) and ẋ1(t) at time t = 2s, as obtained via the WPI technique (a -
b); comparisons with MCS data - 50,000 realizations (c - d).
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Fig. 9. Marginal PDF of x1(t) (a) and ẋ1(t) (b) at time instants t = 1s and t = 2s, as
obtained via the WPI technique; comparisons with MCS data (50,000 realizations).
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Fig. 10. Joint PDF of x10(t) and ẋ10(t) at time t = 1s, as obtained via the WPI technique
(a - b); comparisons with MCS data - 50,000 realizations (c - d).
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Fig. 11. Joint PDF of x10(t) and ẋ10(t) at time t = 2s, as obtained via the WPI technique
(a - b); comparisons with MCS data - 50,000 realizations (c - d).
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Fig. 12. Marginal PDF of x10(t) (a) and ẋ10(t) (b) at time instants t = 1s and t = 2s, as
obtained via the WPI technique; comparisons with MCS data (50,000 realizations).

Regarding computational efficiency, for such a system with 10 DOFs (or434

in other words, 20 stochastic dimensions), a brute-force WPI numerical im-435

plementation requires ∼ 3020 functional minimization problems of the form of436

Eqs. (9)-(10) to be solved. Fig. 3 indicates that the polynomial approximation437

implementation by Kougioumtzoglou et al. [23] requires the solution of only438

10,626 functional minimization problems (i.e., measurements of the joint re-439

sponse PDF), whereas resorting to compressive sampling in conjunction with440

a sparse polynomial approximation technique as developed herein the number441

of optimization problems to be solved decreases to 3,200. As an indicative or-442

der of magnitude, and utilizing a standard PC with up-to-date configurations,443

the joint response transition PDF of this 10-DOF system is determined in less444

than an hour by utilizing the herein developed technique. Further, it is noted445

that according to Fig. 3, the technique becomes even more efficient as com-446

pared to the one in [23] for increasing number of DOFs m. In other words, the447

computational efficiency enhancement becomes even more significant for high-448

dimensional systems. Of course, note that a relatively accurate MCS based449

response PDF estimate would require the solution of ∼ 106 deterministic prob-450

lems; thus, rendering the herein developed WPI technique a significantly more451

efficient alternative.452

5. Conclusion453

Although for low-dimensional systems the WPI technique can be signifi-454

cantly more efficient than MCS, its standard numerical implementation has455
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proven computationally unwieldy for relatively high-dimensional MDOF sys-456

tems. In this regard, extending the work by Kougioumtzoglou et al. [23] who457

developed an efficient formulation of the technique, the current paper has pro-458

posed an enhanced formulation that decreases the computational cost by poten-459

tially several orders of magnitude. Specifically, utilizing an appropriate sparse460

basis for expanding the system joint response PDF, resorting to the WPI local-461

ization features, and employing compressive sampling procedures in conjunction462

with group sparsity concepts, the response PDF expansion coefficients have been463

determined efficiently.464

It is worth noting that in comparison to the formulation by Kougioumt-465

zoglou et al. [23], the enhancement in computational efficiency becomes more466

prevalent as the number of stochastic dimensions increases; thus, rendering467

the herein proposed sparse representation approach indispensable, especially468

for high-dimensional systems. Two illustrative numerical examples have been469

considered. The first refers to a single-degree-of-freedom Duffing oscillator ex-470

hibiting a bimodal response PDF. Although the accuracy of the technique de-471

pends, in general, on the choice of the polynomial degree for a specific problem,472

it has been shown that a 4-th degree polynomial is adequate in capturing even473

relatively complex PDF shapes, such as the bimodal. In the second example,474

the 20-variate joint response transition PDF of a 10-DOF nonlinear structural475

system under stochastic excitation has been determined. The high degree of476

accuracy exhibited has been corroborated by comparisons with pertinent MCS477

data.478
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