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ABSTRACT

A methodology based on the Wiener path integral technique (WPI) is developed for

stochastic response determination and reliability-based design optimization of a class of

nonlinear electromechanical energy harvesters endowed with fractional derivative elements.

In this regard, first, the WPI technique is appropriately adapted and enhanced to account

both for the singular diffusion matrix and for the fractional derivative modeling of the ca-

pacitance in the coupled electromechanical governing equations. Next, a reliability-based

design optimization problem is formulated and solved, in conjunction with the WPI tech-

nique, for determining the optimal parameters of the harvester. It is noted that the herein

proposed definition of the failure probability constraint is particularly suitable for harvester
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configurations subject to space limitations. Several numerical examples are included, while

comparisons with pertinent Monte Carlo simulation data demonstrate the satisfactory per-

formance of the methodology.

1 INTRODUCTION

A large class of energy harvesters exploit the ability of active materials (e.g. piezoelectric) and

electromechanical coupling mechanisms to generate an electric potential in response to external

excitations. Utilizing an appropriate circuit, the electric potential is converted into current, and

thus, mechanical energy is transformed into electrical. Following early efforts referring to linear

system modeling (e.g., [1, 2, 3]), researchers intentionally considered nonlinear designs (e.g., via

appropriate placement of magnets) for increasing the coupling range between the excitation and

the system, and therefore, for enhancing the efficiency and energy output of the harvester (e.g.,

[4,5]).

Further, many energy harvesters operate in tandem with structures and civil infrastructure sys-

tems, which are subjected to environmental excitations that have random and even time-varying

characteristics. Thus, researchers have recently realized the need for modeling the excitations

as stochastic processes [6, 7, 8,9, 10]. Moreover, it has been shown that experimentally collected

impedance data related to various energy storage systems can be best represented by fractional

derivative modeling (e.g., [11, 12]). In this regard, there have been efforts to propose enhanced

versions of the energy harvester coupled electromechanical equations by incorporating fractional

derivative elements (e.g., [13,14]).

Regarding design and optimization of energy harvesters for maximizing energy output, this

has been done primarily by considering deterministic harmonic excitations (e.g., [15]), whereas

the few papers referring to stochastic excitations employ almost exclusively the maximization of

mean harvested power as the optimization criterion [16, 17, 18]. However, as also highlighted

in [19, 20], it is clear that consideration of additional restrictions and constraints related to low

probability events is necessary for avoiding, for instance, equipment failures. Such constraints may

relate to the probability that the voltage and/or the displacement stay within prescribed limits, while
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their inclusion in the energy harvester optimization problem can lead, potentially, to a more robust

and efficient design than what is currently the norm; see also [20] for a more detailed discussion.

Thus, advanced stochastic dynamics techniques are required, capable of determining the joint

response probability density function (PDF) to be used in the constrained optimization problem

of such energy harvesting systems. Obviously, utilization of approximate techniques, such as the

widely employed standard statistical linearization [18, 21, 22], which yield only first- and second-

order response statistics (i.e., mean and standard deviation) is inadequate for optimization subject

to low probability constraints.

In this paper, a methodology based on the Wiener path integral (WPI) technique (e.g., [23,24,

25, 26, 27]) is developed for stochastic response analysis and optimization of a class of energy

harvesters exhibiting asymmetric nonlinearities and endowed with fractional derivative elements.

Specifically, the WPI technique is appropriately adapted herein to be used in conjunction with a

constrained optimization algorithm for determining efficiently the optimal parameters of the energy

harvester. The paper can be construed as an extension of the work in [20] to account for fractional

derivative terms in the governing equations. Further, in comparison to [20], the overall complexity

of the constrained optimization problem is increased not only because of the more sophisticated

modeling based on fractional derivatives, but also due to considering an augmented higher di-

mensional vector of optimization variables. Moreover, regarding the reliability-based probabilistic

constraint, which is considered in the optimization problem, a rather pragmatic definition is pro-

posed herein for cases referring to space limitations. Several numerical examples are included,

while comparisons with pertinent Monte Carlo simulation (MCS) data demonstrate the reliability

and robustness of the methodology.

2 NONLINEAR ELECTROMECHANICAL ENERGY HARVESTER WITH FRACTIONAL DERIVA-

TIVE ELEMENTS

2.1 Modeling aspects

One of the most widely studied electromechanical energy harvesters consists of a cantilever

beam with piezoelectric patches attached near its clamped ends as shown in Fig. 1a. The vibrating
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beam induces strain to the piezoelectric patches, and thus, electrical voltage is generated and

energy is harvested with the aid of an electrical circuit connected to the patches. It has been shown

experimentally [28, 8, 29] that intentional incorporation of system nonlinearities, typically realized

by appropriate installation of magnets as shown in Fig. 1a, can potentially increase the harvested

energy. This has been also verified numerically in several studies [30, 31, 5] in conjunction with a

Duffing model to describe the mechanical nonlinearities. As discussed in detail in [5], the dynamics

of such a system (see Fig. 1a) can be approximated by the following general mathematical model

of coupled electromechanical equations, expressed in a non-dimensional form as

ẍ+ 2ζẋ+
dU(x)

dx
+ κ2y = w(t) (1a)

ẏ + αy − ẋ = 0 (1b)

where x denotes the response displacement, and y represents the induced voltage in capacitative

harvesters or the induced current in inductive ones. Further, ζ is the damping, κ is the coupling

coefficient, α (referred to as the electrical constant in the following) is defined as the ratio between

the mechanical and electrical time constants of the harvester (see [21]), and U(x) denotes the

potential function. Its derivative dU(x)
dx represents the restoring force, which is nonlinear in general;

see [5] for more details. Also, w(t) represents the external excitation, which is modeled as a Gaus-

sian white noise stochastic process with a constant power spectrum value S0. Details regarding

the non-dimensionalization of the governing equations can be found in [21] and [32].

In modeling the restoring force dU(x)
dx , a wide range of nonlinear behaviors can be captured by

the 3rd order polynomial

dU(x)

dx
= x+ λx2 + δx3 (2)

where λ and δ control the intensity of the quadratic and cubic nonlinear terms, respectively,

while the coefficient corresponding to the linear stiffness term equals 1 as a result of the non-
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Fig. 1: (a) Schematic representation of the electromechanical energy harvesting device. (b) Vari-
ous shapes of the potential function for δ = 1.

dimensionalization [21]. Further, considering the behavior of the potential function U(x) for δ ≥ 0

(see Fig. 1b), Eq. (2) leads to a bistable asymmetric potential for λ > 2
√
δ (dashed-dotted line), to

a monostable asymmetric potential for 0 < λ ≤ 2
√
δ (dashed line), and to a monostable symmetric

potential for λ = 0 (dotted line). As shown in [21], for λ = 0 and Gaussian white noise excitation,

the maximum mean harvested power is achieved for δ = 0, or in other words, the linear system

is optimal; see also [33, 31, 34, 35] for a relevant discussion on the optimality of linear systems

under certain conditions. Furthermore, it was shown in [22, 32] that utilizing nonlinear oscillators

with symmetric bistable potentials, i.e., λ = 0 and a restoring force of the form dU(x)
dx = −x + δx3,

can be beneficial for maximizing the mean harvested power. In this regard, a question is posed

naturally regarding the performance, in terms of harvesting efficiency, of potential functions with

asymmetries, i.e., λ 6= 0. This was addressed in [36, 21] where the response statistics of monos-

table harvesters in the regime 0 ≤ λ ≤ 2
√
δ were determined via statistical linearization. It was

shown that the maximum mean harvested power is achieved for some δ > 0 and for the bistability
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limit λ = 2
√
δ (solid line in Fig. 1b).

Further, it can be argued that models of electric circuits involving fractional derivative terms

are, in general, in better agreement with experimental data than their traditionally used integer

order counterparts. In fact, it has been shown that experimentally collected impedance data from

a variety of energy storage systems (e.g. supercapacitors) can be best represented by fractional

order models (e.g. [11,12]).

Although there have been few recent research efforts to provide an enhanced version of Eq.

(1) by incorporating fractional derivative terms in the electrical Eq. (1a) (e.g. [13, 14]), these have

been either limited to considering cases of deterministic excitation only, or restricted to system

response analysis without proposing any efficient optimization framework. In this paper, a class

of nonlinear electromechanical energy harvesters with fractional order derivatives in the electrical

equation and parameter λ ≤ 2
√
δ, with δ ≥ 0 (i.e., monostable asymmetric system) is considered.

These systems are characterized by a single equilibrium position at (x, y) = (0, 0). Following [14]

for the fractional derivative modeling of the capacitance, the coupled electromechanical system of

equations takes the general form

ẍ+ 2ζẋ+ x+ λx2 + δx3 + κ2y = w(t) (3a)

Dry + αy − ẋ = 0 (3b)

where Dr is the r-th order fractional derivative operator, defined as

Dr[f(t)] =
drf

dtr
=

1

Γ(1− r)

∫ t

ti

ḟ(τ)

(t− τ)r
dτ (4)

Eq. (4) represents a Caputo fractional derivative of order 0 < r < 1 (see also [37] for alternative

fractional derivative definitions). Note that in the limit r → 1 Eq. (3b) degenerates to Eq. (1b). Next,

to provide some insight regarding the dynamics of the system of Eq. (3), Eq. (3a) can be construed

as the governing stochastic differential equation (SDE) constrained by the fractional differential
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equation (FDE) of Eq. (3b). The system response vector process q = [x, ẋ, y]T starts from initial

conditions, exhibits a transient phase, and eventually reaches stationarity where the maximum

response variance is observed. In this regard, the mean harvested power Ph is proportional to the

stationary variance of the zero-mean electrical quantity y, and is given by (e.g. [5])

Ph = αE{y2} (5)

where E{.} represents the expectation operator. It is noted that in comparison with reference [20],

not only the complexity of the governing equations (Eq. (1)) is increased by considering fractional

derivative terms, but also the range of harvester design configurations to be studied herein is

extended by allowing λ ≤ 2
√
δ (unlike λ = 2

√
δ used in [20]).

2.2 Optimization aspects

From an optimal design perspective, the objective is typically expressed in the literature as

maximizing the mean stationary harvested power Ph for a given excitation intensity S0. This can

be formulated as an optimization problem in the set of parameters {ζ, δ, λ, κ, α} ⊆ R5
+, where R+

denotes the set of positive real numbers. Nevertheless, the complexity of the problem can be

decreased by examining the impact of parameter κ on the system dynamics. Specifically, consid-

ering equations (1) and (5), it is seen that a larger coupling coefficient κ yields a larger variance

of the electrical quantity y in a monotonic manner. As a result, κ should take the largest value

possible, and thus, can be excluded from the optimization problem. The rest of the parameters

affect the output harvested power in a more complex manner (see also [20] for a relevant discus-

sion). Therefore, they need to be included in the optimization. In this regard, for the parameter

vector z = [α, δ, ζ, λ] and for κ and S0 fixed, the harvester design problem can be formulated as

an optimization problem of the form

arg max
z∈Z

Ph(z) (6)

7



Insert ASME Journal Title in the Header Here

where Z ⊂ R4
+ is an effective domain of parameter values.

Nevertheless, additional design criteria need to be considered in practice, which translate into

constraints to be enforced. Such constraints can take the general form Pf (z) < ε, where the

probability of failure Pf refers typically to an “extreme event” characterized by a low probability

of occurrence. Indicatively, excessively high voltage levels, or extreme displacement values, may

compromise the proper function of the electronic circuits, or may cause mechanical failure to the

oscillator, respectively. In such cases, Pf can be defined as the probability that either |x| or |y|

exceed some prescribed limit, i.e. Pf = P (|x| > xlimit or |y| > ylimit). Taking such an additional

design criterion into account, Eq. (6) is reformulated as a reliability-based optimization problem in

the form

arg max
z∈Z

Ph(z) s.t. Pf (z) ≤ ε (7)

Note, however, that if failure is defined as |x| > xlimit, the imposed limits on the displacement

x are symmetric with respect to the equilibrium position x = 0. Although this may be a reasonable

constraint definition for cases referring, for instance, to mechanical failures due to excessive levels

of displacement, it is problematic when addressing the challenge of limited available space for the

harvester. Specifically, it can be readily seen that since the herein considered harvesting system

is asymmetric, employing such a failure definition does not exploit fully the available space; thus,

leading potentially to an unnecessarily conservative design. In this regard, a more pragmatic

approach regarding the failure criterion for such cases is proposed in the following. This relates

to considering a box of specific width Lb, and to defining the probability of failure as the smallest

probability of exceeding either end of the box for all possible locations of the harvester within

the box. This is represented graphically and explained in Fig. 2a, which depicts the stationary

marginal PDF of the response displacement x of a typical asymmetric harvester, positioned at two

different locations within a box of width Lb. The thin solid curve denotes the PDF of the harvester

with equilibrium position at x = 0, leading to a probability of failure Pf,1 (shaded red region).

This configuration can be found by utilizing a constraint on the probability of failure of the form
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Fig. 2: Impact of the harvester location δx within a box of width Lb on the probability of failure
Pf . (a) Stationary marginal PDFs of the response displacement x. Thin solid curve: δx = 0
yielding Pf,1. Thick solid curve: δx > 0 yielding Pf,2 < Pf,1. (b) Relationship between δx and Pf ,
depicting a well defined optimal position.

Pf = P (|x| > xlimit) < ε with xlimit = Lb
2 . Further, the thick solid curve in Fig. 2a, represents

the PDF of the same harvester, shifted by δx to the right to yield an overall lower probability of

failure Pf,2 < Pf,1 (shaded blue region). Thus, from a practical perspective, the optimal design of

an asymmetric harvester subject to limited available space should, ideally, specify the location of

the device (or more specifically, the location of its equilibrium position) within the box, so that the

probability of failure is minimized (see Fig. 2b). This is typically achieved when Pf is “shared” by

both tails in an optimal manner. In other words, the harvester should be placed within the box in a

manner that exploits fully the available space for a given box width Lb.

In this regard, the location of a harvester’s equilibrium position within the box, i.e., the shift

parameter δx, needs to be considered as an additional unknown variable to be determined. Thus,

the design optimization problem in Eq. (7) is adapted by considering the augmented variable

vector z̄ = [z, δx] = [α, δ, ζ, λ, δx] and by defining the probability of failure Pf as

Pf (z̄) = 1− Sz(δx) (8)
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where

Sz(u) =

∫ ∞
−∞

rect
(
v

Lb

)
pz,s(v + u)dv (9)

represents the survival probability and rect (.) is a rectangular pulse function defined as

rect (x) =


0, if |x| > 1

2

1
2 , if |x| = 1

2

1, if |x| < 1
2

(10)

Also, Fig. 2b shows a typical behavior of Eq. (8) with respect to δx.

However, a closer examination of the objective function in Eq. (7), reveals that this depends

only on z, i.e., the variables α, δ, ζ and λ, whereas δx is involved only in the constraint. More-

over, for a given set of values z, the optimal location δx∗, i.e., the one corresponding to minimal

probability of failure, can be determined simply as

δx∗ = arg max
u

Sz(u) (11)

From a numerical optimization perspective, this enables the evaluation of the vector z at each

iteration step independently of δx, followed by the estimation of the optimal δx∗ by solving the

rather trivial (1-dimensional) problem of Eq. 11. In other words, the optimization problem considers

effectively only the four variables of vector z to be optimized simultaneously at each iteration,

whereas the optimal location δx∗ is provided essentially as a by-product. Thus, the complexity of

the optimization problem relates, essentially, to a 4-dimensional problem involving z, such as in

Eq. (7) (as opposed to an augmented 5-dimensional problem involving z̄), whereas considering
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(11), Eq. (8) is written as

Pf (z) = 1−max
u

Sz(u) (12)

Further, a penalty approach is utilized herein for solving the constrained problem of Eq. (7).

This yields an unconstrained problem with the modified objective function Ph,ε(z) = 1ε(z)Ph(z),

where 1ε is an indicator function defined as

1ε(z) =


0, Pf (z) ≥ ε

1, otherwise
(13)

Considering that information regarding the gradient of the objective function Ph(z) related to Eq.

(7) is not available in general, the extended gradient-free Generalized Pattern Search (GPS) op-

timization algorithm is utilized next, which requires no assumptions about the differentiability and

continuity of the objective function [38,39,40].

Obviously, knowledge of the harvester complete response PDF is required to be used in the

optimization procedure, and not only of the response mean and variance that are typically de-

termined in the literature. To this aim, the WPI stochastic response determination technique is

adapted and applied herein in conjunction with the constrained optimization problem of Eq. (7).

In comparison with reference [20], a more pragmatic version of the reliability-based constraints

referring to space limitations is considered in Eq. (12), while the overall complexity of the opti-

mization problem is increased. This is not only because of a more sophisticated modeling of Eq.

(1) based on fractional derivatives, but also due to considering a higher dimensional vector z; that

is, five optimization variables (i.e., [α, ζ, λ, δ] and δx) are considered herein in contrast to the two

variables in [20]. Hereinafter, the explicit dependence of a stationary marginal response PDF on

z is suppressed for simplicity and pz,s(.) is denoted as ps(.).
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3 WIENER PATH INTEGRAL SOLUTION TECHNIQUE OVERVIEW

The WPI technique has been recently pioneered and developed in the field of engineering

dynamics for determining the stochastic response of diverse dynamic systems, including multi-

degree-of-freedom structures exhibiting various nonlinear behaviors, even endowed with fractional

derivative terms and subject to non-Gaussian and non-white excitations [23, 24, 26, 27, 41, 42].

A significant advantage of the technique relates to the fact that it exhibits both relatively high

accuracy and reasonable computational cost in determining the joint response transition PDF,

especially when coupled with sparse representations and compressive sampling concepts and

tools [25,41,43].

For completeness, the salient aspects of the technique are delineated in the present section

by considering the general class of n-dimensional randomly excited systems whose dynamics is

described by

D[q(t)] = w(t) (14)

In Eq. (14),D[.] denotes a nonlinear, in general, differential operator with second being the highest

order derivative involved according to the standard modeling of structural/mechanical systems.

Further, q is the system response, and w is a white noise stochastic excitation vector process

with E[w(t1)w(t2)] = Bδ(t2 − t1); δ(.) denotes the Dirac delta function and B is a deterministic

coefficient matrix given by

B =


2πS0 . . . 0

...
. . .

...

0 . . . 2πS0

 (15)

Next, relying on the mathematical framework of path integrals [44], the response transition

12
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PDF p(qf , q̇f , tf |qi, q̇i, ti) can be written as [24]

p(qf , q̇f , tf |qi, q̇i, ti) =

∫
C{qi,q̇i,ti;qf ,q̇f ,tf}

exp

− tf∫
ti

L (q, q̇, q̈) dt

 [dq(t)] (16)

with {qi, q̇i, ti} denoting the initial state and {qf , q̇f , tf} the final state, and qi = q(ti), qf = q(tf ),

q̇i = q̇(ti) and q̇f = q̇(tf ). Eq. (16) represents a functional integral over the space of all possible

paths C{qi, q̇i, ti; qf , q̇f , tf}, with [dq(t)] being a functional measure [44] and L (q, q̇, q̈) denoting

the Lagrangian functional expressed as [24]

L(q, q̇, q̈) =
1

2
D[q]TB−1D[q] (17)

In general, analytical evaluation of the functional integral of Eq. (16) is not possible. To address

this challenge, one of the most typically used approximate techniques relates to considering only

the largest contribution to the functional integral. This comes from the trajectory qc(t) for which

the integral in the exponential of Eq. (16) (also known as stochastic action) becomes as small

as possible (e.g. [44]). In this regard, the determination of the n-dimensional most probable path

qc(t) is formulated as a variational problem (functional minimization) of the form

minimize J (q) =

∫ tf

ti

L(q, q̇, q̈)dt, (18)

subject to the set of boundary conditions

qj(ti) = qj,i q̇j(ti) = q̇j,i

qj(tf ) = qj,f q̇j(tf ) = q̇j,f

j = 1, ..., n (19)

13
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Following determination of qc(t), a specific point of the system response transition PDF is evalu-

ated as [24]

p(qf , q̇f , tf |qi, q̇i, ti) ≈ C exp

− tf∫
ti

L(qc, q̇c, q̈c)dt

 (20)

In Eq. (20), the normalization constant C is computed by utilizing the condition

∞∫
−∞

· · ·
∞∫
−∞

p(qf , q̇f , tf |qi, q̇i, ti)dx1,fdẋ1,f . . . dxm,fdẋm,f = 1 (21)

4 ADAPTATION OF THE WIENER PATH INTEGRAL TECHNIQUE TO ADDRESS THE NON-

LINEAR ELECTROMECHANICAL HARVESTER WITH FRACTIONAL DERIVATIVE TERMS

4.1 Theoretical aspects

Considering Eq. (3), it can be readily seen that a straightforward application of Eq. (17) would

lead to a singular matrix B. Thus, a modification is required to the WPI technique presented in

Sec. 3 to account for the special form of Eq. (3). In the ensuing analysis, Eq. (3a) is construed

as an under-determined SDE with 2 unknown functions (x(t) and y(t)), excited by the Gaussian

white noise process w(t). Setting q = [x, y]T , the corresponding Lagrangian is expressed as

L(q, q̇, q̈) = L(x, y, ẋ, ẍ) =
1

4πS0

[
ẍ+ 2ζẋ+ x+ λx2 + δx3 + κ2y

]2 (22)

Next, to account also for the impact of Eq. (1b) on the harvester dynamics, Eq. (1b) is treated as

a dynamic constraint in the form

φ(y,Dry, ẋ) = Dry + αy − ẋ = 0 (23)

14
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Eq. (22) in conjunction with Eq. (23) lead to a fractional constrained variational problem of the

form

minimize J (x, y, ẋ, ẍ) =

∫ tf

ti

L(x, y, ẋ, ẍ)dt subject to φ(y,Dry, ẋ) = 0 (24)

with the boundary conditions

x(ti) = xi, ẋ(ti) = ẋi, y(ti) = yi

x(tf ) = xf , ẋ(tf ) = ẋf , y(tf ) = yf

(25)

In the following section, the numerical solution of Eqs. (24)-(25) is determined by formulating and

employing a constrained optimization numerical scheme (e.g. [45]).

4.2 Numerical aspects

In this section, a Rayleigh-Ritz direct minimization approach is proposed for solving the con-

strained variational problem of equations (24)-(25), and for determining the most probable path

qc(t) = [xc(t), yc(t)]
T .

In this regard, the standard Rayleigh-Ritz approach relies on an expansion for q(t) in the form

q(t) ≈ q̂(t) = ψ(t) + Ch(t), where h(t) = [h0(t), ..., hL−1(t)]
T is a basis of polynomial functions

vanishing at the boundaries, ψ(t) = [ψ1(t), ..., ψn(t)]T is a vector of n polynomials satisfying the

boundary conditions and C ∈ Rn×L is the expansion coefficient matrix. Obviously, since this ex-

pansion satisfies the boundary conditions by construction, the functional minimization problem of

equations (18)-(19) can be directly reformulated as an unconstrained optimization problem over

the space of the coefficients C. Note, however, that in the herein developed formulation, in ad-

dition to the boundary conditions of Eq. (25), the dynamic constraint of Eq. (23) needs to be

accounted for as well. Thus, a standard implementation of the Rayleigh-Ritz approach would lead,

unavoidably, to an overall constrained optimization problem (e.g. [20]). In this regard, an alterna-
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tive formulation of the optimization problem is proposed next, which accounts for the boundary

conditions and the dynamic constraint in a more direct and straightforward manner. Specifically, a

standard polynomial expansion for q(t) = [x(t), y(t)]T is adopted, which takes the form

x̄(t)

ȳ(t)

 = Cg(t) =

[
cx cy

]T
g(t) (26)

where g(t) = [g0(t), ..., gL−1(t)]
T is a basis of polynomial functions that are orthogonal in the

interval [ti, tf ]. In the ensuing analysis, the shifted Legendre polynomials given by the recursive

formula

gp+1(t) =
2p+ 1

p+ 1

(
2t− ti − tf
tf − ti

)
gp(t)−

p

p+ 1
gp−1(t), p = 1, 2, ... (27)

are employed, with g0(t) = 1; and g1(t) = (2t − ti − tf )/(tf − ti). Next, the first and second

derivatives of x(t) are expressed as ˙̄x = cxġ and ¨̄x = cxg̈, respectively, and thus, the functional

J (x, y, ẋ, ẍ) in Eq. (24) is approximated by the function

J(c) = J (x̄, ȳ, ˙̄x, ¨̄x) (28)

where c =

[
cTx c

T
y

]T
∈ R2L is the vectorized form of C ∈ R2×L. Moreover, the fractional order

derivative of y(t) is expressed as

Drȳ = cyD
rg (29)

where Drg = {Dr[g0(t)], ..., D
r[gL−1(t)]}T is the vector of fractional derivatives of the L polynomial
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basis functions.

Clearly, compared to the classical Rayleigh-Ritz method, [x̄(t), ȳ(t)]T in the expansion of Eq.

(26) do not necessarily satisfy the boundary conditions of Eq. (25). To address this point, the initial

and final boundary conditions of Eq. (25) are imposed explicitly as linear constraints of the form

Aic =i

Afc =f

(30)

where the matrices Ai,Af ∈ R3×2L are given by

Ai =


g(ti)

T 0

0 g(ti)
T

ġ(ti)
T 0

 and Af =


g(tf )T 0

0 g(tf )T

ġ(tf )T 0

 (31)

and the initial and final state vectors i and f take the form

i =


xi

yi

ẋi

 an f =


xf

yf

ẋf

 (32)

Moreover, by employing the expansion of Eq. (26), the dynamic constraint φ(y,Dry, ẋ) = 0 of

Eq. (24), which needs to be satisfied for all t ∈ [ti, tf ], is approximated by φ̄(c, t) = φ(ȳ, Drȳ, ˙̄x) =

0, and is equivalently expressed as

ξ(c) :=

tf∫
ti

[φ̄(c, t)]2dt = 0 (33)
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Next, taking into account both the constraint of Eq. (30) and the constraint of Eq. (33), the con-

strained variational problem in equations (24)-(25) is reformulated as a constrained optimization

problem in the form

J∗
f

= min
c∈RnL

J(c)

subject to ξ(c) = 0Ai

Af

 c =

 i
f


(34)

Further, according to Eq. (20) and assuming fixed initial conditions i at ti (e.g., system initially

at rest), a specific point of the response transition PDF corresponding to final state f at tf is

determined as

p̄(f , tf |i, ti) = C exp
(
−J∗

f

)
(35)

where C is a normalization constant. Obviously, choosing a sufficiently large final time instant tf

Eq. (35) converges to the stationary joint response PDF ps(f ) = p̄(f , tf |i, ti). The optimization

problem of Eq. (34), which has both linear and nonlinear equality constraints, is solved in the

following examples by a standard interior point method presented in [46,47].

5 NUMERICAL EXAMPLES

To demonstrate the reliability of the proposed technique for analyzing and optimizing energy

harvesting systems, a mono-stable asymmetric nonlinear harvester (0 ≤ λ ≤ 2
√
δ, δ ≥ 0) with a

fractional derivative term described by Eq. (3) is considered in this section. First, to demonstrate

the accuracy of the adapted WPI technique described in Sec. 4, the stationary marginal response

PDFs are determined and compared with pertinent MCS data. Next, optimal energy harvester

designs are obtained by employing the aforementioned WPI technique in conjunction with Eq. (5)
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Fig. 3: Marginal response PDFs of a nonlinear energy harvester with ζ = 0.1, κ = 0.65, α = 0.8,
δ = 0.2, S0 = 0.05 and fractional derivative order r = 0.75 for three (non dimensional) time instants
t = 1, t = 10 and t = 20. Comparison with MCS data (10, 000 realizations).

as the objective function of a global optimization algorithm, constrained via a prescribed probability

of failure (see Eq. (7) and Eq. (12)).

5.1 Energy harvester stochastic response analysis

The nonlinear energy harvester with mono-stable asymmetric potential (see Eq. (3)) and pa-

rameters ζ = 0.1, κ = 0.65, α = 0.8, δ = 0.2 and S0 = 0.05 is considered next. The stationary

marginal response PDFs ps(x) and ps(y) for fractional derivative order r = 0.75 and for three

(non-dimensional) time instants t = 1, t = 10 and t = 20 are shown in Fig. 3 and compared with

pertinent MCS data. It is observed that the system has practically reached stationarity for t = 10.

Clearly, the WPI technique exhibits a high degree of accuracy in determining the stochastic re-

sponse of the nonlinear harvester, even for the challenging case of the strongly non-Gaussian and

asymmetric displacement PDF ps(x).

Moreover, the stationary marginal response PDFs determined by the WPI technique for frac-

tional derivative order r values 1, 0.75 and 0.5 are shown in Fig. 4 and compared with pertinent

MCS data. The WPI technique exhibits a high degree of accuracy in determining the response

PDFs, for all considered values of the fractional derivative order. Obviously, the impact of the frac-

tional derivative order is larger on the electrical quantity y (as compared to x), since the fractional
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Fig. 4: Stationary marginal response PDFs of a nonlinear energy harvester with ζ = 0.1, κ = 0.65,
α = 0.8, δ = 0.2 and S0 = 0.05 for various values of the fractional derivative order r = 1, r = 0.75
and r = 0.5. Comparison with MCS data (10, 000 realizations).

derivative in Eq. (1b) operates directly on y.

5.2 Energy harvester design optimization

In this section, the results of a 4-parameter (α, δ ζ, λ) and a 2-parameter (α, δ) harvester

design optimization problems, both with and without constraints related to probability of failure, are

presented and discussed. In both cases, the optimal locations δx∗ are provided as well according

to the formulation in Sec. 2.2.

5.2.1 4-parameter design optimization

The general 4-parameter optimization problem is considered herein with z = [α, δ, ζ, λ]T ∈

[0.5, 3]× [0, 5]× [0.05, 0.2]× [0, 2
√
δ] and fractional derivative order r = 1. The GPS algorithm [38]

is utilized for the solution of the optimization problem of Eq. (7) with constrained Pf defined in Eq.

(12), whereas the unconstrained case is studied as well by setting Lb →∞.

Since the GPS algorithm is not guaranteed to converge to the global optimum, 5 optimization

chains are considered, i.e., 5 independent optimization runs starting from different initial points,

to increase the probability of converging to the global optimum. These 5 initial points are chosen

based on the rationale described in the following. First, the 4-dimensional input space is discretized
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into a coarse grid of 961 points and the marginal PDFs of x and y corresponding to each grid point

are obtained by utilizing the WPI technique presented in Sec. 4.2. Next, the points violating the

condition λ ≤ 2
√
δ, and/or leading to failure with respect to the specific box size parameter Lb and

probability threshold ε, are discarded. The 30 feasible points yielding the highest energy output

Ph are identified and the one corresponding to the highest overall Ph value is selected as the first

initial point. Further, the remaining 4 initial points for each optimization chain are chosen among

the rest of the 29 points as the ones exhibiting the largest sum of distances with respect to the

other points. Clearly, this procedure selects initial points with the following desirable properties: a)

they are feasible; b) they are located in regions corresponding to high energy output; and c) they

are reasonably dispersed over these high output regions.

The results of the 5 optimization chains for the unconstrained probability of failure case (Lb →

∞) are plotted in Fig. 5 as projections on 2D planes, where the color of the circles varies with the

iteration number (starting from dark blue and converging to yellow). This representation provides

a crude illustration of the optimization solution path in the 4-dimensional space. It is seen, that the

5 chains converged to different points characterized by different mean harvester power outputs,

and that all converged points are located on the bistability limit λ = 2
√
δ. Moreover, the optimal

parameter ζ∗ reaches its lower bound of 0.05 (see figures 5d-5f). This is anticipated as a mechan-

ical system with low damping leads to higher amplitude vibrations, and thus, to higher harvested

power.

However, in many practical implementations, space limitations dictate constraints on the vibra-

tion amplitude, such as the one described by Eqs. (7)-(12). In this regard, and focusing on the

constrained optimization problem of Eqs. (7)-(12) with ε = 10−3, the results of the 5 optimization

chains are shown in Fig. 6 for two design examples with Lb = 2.4 (figures 6a,6c,6e) and Lb = 3

(figures 6b,6d,6f). In these examples, some chains converge to designs, which do not correspond

to the bistability limit (λ = 2
√
δ). In fact, it can be seen in Fig. 6e that for a relatively “tight” box with

Lb = 2.4, the global optimum found yields a symmetric harvester, i.e., λ ≈ 0. This trend is evident

in Tab. 1, which summarizes the optimal (among the 5 chains) results, for various examples with

increasing Lb, including the unconstrained case (Lb = ∞). Indeed, note that for Lb < 2.9, the
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Box size Optimal design Average Probability of
Lb α∗ δ∗ ζ∗ λ∗ δx∗ power Ph failure Pf

2.3 1.761 3.573 0.05 0.000 0.000 0.1514 0.000999
2.4 1.678 2.982 0.05 0.033 0.005 0.1593 0.000997
2.5 1.678 2.510 0.05 0.013 0.002 0.1635 0.000994
2.6 1.640 2.112 0.05 0.003 0.001 0.1701 0.000999
2.7 1.610 1.810 0.05 0.105 0.025 0.1736 0.000936
2.8 1.557 1.503 0.05 0.004 0.001 0.1807 0.000993
2.9 1.115 1.973 0.05 2.809 0.565 0.1864 0.000780
3.0 1.090 1.753 0.05 2.648 0.557 0.1926 0.000727
∞ 0.887 0.556 0.05 1.491 - 0.2349 0.000000

Table 1: Summary of optimal energy harvester designs for z = [α, δ, ζ, λ]T ∈ [0.5, 3] × [0, 5] ×
[0.05, 0.2] × [0, 2

√
δ], κ = 0.65, r = 1 and different box sizes Lb. Unconstrained (Lb = ∞) and

constrained probability of failure with ε = 10−3.

optimal harvester is approximately symmetric (λ ≈ 0), whereas for Lb ≥ 2.9 the constraint on the

probability of failure becomes less severe and asymmetric designs appear to yield higher power

output. In fact, these asymmetric designs tend to converge to the bistability limit with λ = 2
√
δ.

Moreover, as the available space Lb decreases, the parameter δ∗ is increased to provide additional

stiffness and restrict the oscillator within the gradually tighter bounds.

5.2.2 2-parameter design optimization

According to the results of the 4-parameter design optimization examples presented in Tab.

1, ζ∗ always takes its lower bound value, while λ∗ converges either to its lower allowable value

of 0 or to the bistability limit 2
√
δ. Motivated by the above observations, a 2-parameter design

optimization is pursued in this section aiming at enhanced computational efficiency and more

robust convergence behavior. Specifically, z in Eq. (7) becomes z = [α, δ]T ∈ [0.5, 3] × [0, 5] with

ζ = 0.05, κ = 0.65. Two distinct values of lamda are considered in the examples, i.e., λ = 0 and

λ = 2
√
δ. Notably, employing a similar approach as in Sec. 5.2.1, all 5 optimization chains applied

for a given set of fixed parameters converged to the same optimal point. Clearly, this indicates that

the 2-parameter optimization exhibits a more robust convergence behavior than its 4-parameter

counterpart. For various values of the box size parameter Lb the converged optimal points are

presented in Tab. 2 for λ = 0 and in Tab. 3 for λ = 2
√
δ. Moreover, Fig. 7 depicts the points
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Fig. 5: 2D projections of computed points (color varies with iteration count). Optimization by
GPS algorithm with z = [α, δ, ζ, λ]T ∈ [0.5, 3] × [0, 5] × [0.05, 0.2] × [0, 2

√
δ], κ = 0.65, r = 1 and

unconstrained probability of failure (Lb =∞).
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Fig. 6: 2D projections of computed points (color varies with iteration count and unfilled cir-
cles correspond to probabilities of failure larger that ε). Optimization by GPS algorithm with
z = [α, δ, ζ, λ]T ∈ [0.5, 3] × [0, 5] × [0.05, 0.2] × [0, 2

√
δ], κ = 0.65, r = 1 and constrained prob-

ability of failure with Lb equal to 2.4 (6a,6c,6e) and 3 (6b,6d,6f) and ε = 10−3.
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Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure Pf

2.3 1.765 3.574 0.000 0.1516 0.001000
2.4 1.750 3.008 0.000 0.1578 0.000971
2.5 1.672 2.578 0.000 0.1624 0.000879
2.6 1.638 2.130 0.000 0.1680 0.000962
2.7 1.589 1.782 0.000 0.1738 0.000991
2.8 1.560 1.509 0.000 0.1787 0.000982
2.9 1.574 1.289 0.000 0.1837 0.000969
3.0 1.480 1.082 0.000 0.1906 0.000995
∞ 1.190 0.000 - 0.2231 0.000000

Table 2: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5], λ = 0,
ζ = 0.05, κ = 0.65, r = 1 and different box sizes Lb. Unconstrained (Lb = ∞) and constrained
probability of failure with ε = 10−3.

Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure Pf

2.3 1.325 4.407 0.442 0.1465 0.000997
2.4 1.284 3.801 0.488 0.1533 0.000999
2.5 1.252 3.259 0.516 0.1607 0.000905
2.6 1.188 2.823 0.537 0.1677 0.000996
2.7 1.195 2.477 0.550 0.1746 0.000989
2.8 1.130 2.178 0.558 0.1817 0.000972
2.9 1.103 1.917 0.559 0.1898 0.000992
3.0 1.086 1.659 0.572 0.1952 0.000963
∞ 0.890 0.459 - 0.2373 0.000000

Table 3: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5], λ = 2
√
δ,

ζ = 0.05, κ = 0.65, r = 1 and different box sizes Lb. Unconstrained (Lb = ∞) and constrained
probability of failure with ε = 10−3.

accessed by the 5 optimization chains for λ = 2
√
δ, and box size parameter Lb equal to 2.4, 3 and

∞.

It is seen in tables 2 and 3 that, similarly to the 4-parameter optimization of Sec. 5.2.1, for

relatively small box sizes Lb the symmetric design (λ = 0 - Tab. 2) outperforms the asymmetric

design (λ = 2
√
δ - Tab. 3), whereas as Lb increases, asymmetry leads to higher energy output,

even for the unconstrained case (Lb = ∞). Further, the theoretically supported fact (e.g. [31, 33,

34,35]), that the linear design, i.e., δ = 0, is optimal among symmetric (λ = 0) and unconstrained
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(a) 3D plot - Lb = 2.4 (b) overview plot - Lb = 2.4

(c) 3D plot - Lb = 3 (d) overview plot - Lb = 3

(e) 3D plot - Lb =∞ (f) overview plot - Lb =∞

Fig. 7: Stationary mean harvested power Ph. Optimization by GPS algorithm with z = [α, δ]T ∈
[0.5, 3] × [0, 5], λ = 2

√
δ, ζ = 0.05, κ = 0.65, r = 1. (a),(c) and (e): 3D surface plots with gradient

coloring. (b),(d) and (f): overview plots with flat coloring.
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(Lb → ∞) harvesters, is further corroborated by the herein analysis; see last row of Tab. 2. In

contrast, it appears that the introduction of asymmetric nonlinearities, i.e., δ > 0 and λ = 2
√
δ

yields designs that outperform significantly the linear design in terms of energy output; this is also

in agreement with conclusions drawn in [36,21,20] based on relevant numerical studies. Moreover,

considering the shape of the surface plots in Fig. 7, and that all 5 chains converged to the same

point, indicates the existence of a single (global) optimum for the 2-parameter optimization case.

Next, attention is directed to three indicative optimal harvesters in Tab. 3 with Lb values of 2.4,

3 and ∞. The corresponding stationary marginal response PDFs ps(x) and ps(y) are obtained

by employing the herein adapted WPI technique. These are plotted in Fig. 8 and compared with

MCS data. Besides the relatively high degree of accuracy exhibited by the WPI technique, it is

seen in figures 8a and 8c that the optimal shape of ps(x) tends towards a rectangular form. This

is anticipated, since this particular shape of ps(x) leads, in general, to low probability of failure.

Also, it corresponds to a relatively higher variance of x, and therefore (see Eq. (1a)), to a higher

variance of y as well, i.e., higher energy output (see Eq. 5).

5.2.3 2-parameter design optimization for various fractional derivative order values

In this subsection, the 2-parameter design optimization problem of Sec. 5.2.2 is considered

for harvesters with λ = 2
√
δ and with two distinct fractional derivative order values, i.e., r = 0.75

and r = 0.50. The results are summarized in Tab. 4 for r = 0.75 and in Tab. 5 for r = 0.50.

The conclusions are similar to Sec. 5.2.2 (see Tab. 3), while it is evident that the energy output

decreases for decreasing fractional derivative order r as shown in Sec. 5.1 (see Fig. 4b).

6 CONCLUDING REMARKS

In this paper, a WPI-based methodology has been developed for stochastic response deter-

mination and reliability-based design optimization of a class of energy harvesters exhibiting asym-

metric nonlinearities and endowed with fractional derivative elements. To this aim, first, the WPI

stochastic dynamics solution technique has been adapted and enhanced for addressing the pecu-

liarities of the coupled electromechanical governing equations; that is, the presence of a singular

diffusion matrix and of a fractional derivative term associated with the capacitance. Specifically,
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Fig. 8: Response PDFs of three optimal designs corresponding to box size parameter Lb values
of 2.4, 3 and ∞; see second, eighth and ninth rows of Tab. 3, respectively, for optimal design
parameters (α∗, δ∗), shift parameter δx, mean harvested power Ph and probability of failure Pf .
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Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure Pf

2.3 1.408 4.531 0.429 0.1235 0.000917
2.4 1.359 3.906 0.476 0.1280 0.000907
2.5 1.398 3.350 0.509 0.1331 0.000983
2.6 1.555 2.969 0.521 0.1377 0.000941
2.7 1.440 2.617 0.540 0.1419 0.000832
2.8 1.438 2.266 0.552 0.1471 0.000953
2.9 1.379 1.992 0.559 0.1505 0.000881
3.0 1.474 1.783 0.553 0.1593 0.000916
∞ 1.047 0.625 - 0.1767 0.000000

Table 4: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5], λ = 2
√
δ,

ζ = 0.05, κ = 0.65, r = 0.75 and different box sizes Lb. Unconstrained (Lb = ∞) and constrained
probability of failure with ε = 10−3.

Box size Optimal design Average Probability of
Lb α∗ δ∗ δx∗ power Ph failure Pf

2.3 1.398 4.492 0.433 0.1102 0.000920
2.4 1.438 3.866 0.478 0.1136 0.000975
2.5 1.357 3.330 0.513 0.1177 0.000942
2.6 1.320 2.930 0.533 0.1213 0.000867
2.7 1.276 2.490 0.553 0.1252 0.000989
2.8 1.342 2.224 0.559 0.1288 0.000983
2.9 1.474 2.012 0.556 0.1317 0.000981
3.0 1.408 1.787 0.556 0.1369 0.000901
∞ 1.875 1.000 - 0.1569 0.000000

Table 5: Summary of optimal energy harvester designs for z = [α, δ]T ∈ [0.5, 3] × [0, 5], λ = 2
√
δ,

ζ = 0.05, κ = 0.65, r = 0.50 and different box sizes Lb. Unconstrained (Lb = ∞) and constrained
probability of failure with ε = 10−3.

following a variational formulation for the WPI, and interpreting the electrical equation as a dynamic

constraint to a stochastically excited underdetermined SDE, has led to a Rayleigh-Ritz direct min-

imization problem for determining the system joint response PDF.

Next, the WPI technique has been coupled with a gradient-free optimization algorithm for de-

termining the harvester optimal parameters subject to constraints relating to probabilities of failure.

In fact, a rather pragmatic failure definition has been proposed herein suitable for harvester con-

figurations subject to space limitations. Notably, this definition also leads to obtaining the optimal
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position of the harvester within a predefined operational width (box); thus, the potentially limited

available space is fully exploited. Several numerical examples have been considered demonstrat-

ing the satisfactory performance of the methodology. Comparisons with pertinent MCS data have

been included as well showing a relatively high accuracy degree.

Further, it is worth highlighting the following observations based on the numerical analyses: a)

among the symmetric monostable nonlinear harvesters with cubic nonlinearity, the linear design

is shown to be the optimum (see last row of Tab. 2 and also [33, 31, 34, 35]); b) the presence of

asymmetry, i.e., quadratic nonlinearities in addition to the cubic nonlinear term, leads to nonlinear

designs that outperform the linear harvester (see last rows of both tables 2 and 3 and also [36,21]);

and c) in the 4-parameter design optimization of Sec. 5.2.1, most chains converge to points where

the asymmetry parameter takes values on the bistability limit λ = 2
√
δ (see figures 5 and 6). Note

that this is the maximum allowed value since only mono-stable harvesters have been considered

herein. This is a strong indication that the mean harvested power (i.e., objective function) exhibits

larger values for λ > 2
√
δ. In other words, this finding supports results in the literature indicating

that bistable harvesters outperform, in general, monostable harvesters (e.g., [22, 30, 32, 5, 48, 33,

49]).
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