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Abstract

The Wiener path integral (WPI) approximate semi-analytical technique for determining the joint response

probability density function (PDF) of stochastically excited nonlinear oscillators is generalized herein to ac-

count for systems with singular diffusion matrices. Indicative examples include (but are not limited to) systems

with only some of their degrees-of-freedom excited, hysteresis modeling via additional auxiliary state equa-

tions, and energy harvesters with coupled electro-mechanical equations. In general, the governing equations

of motion of the above systems can be cast as a set of underdetermined stochastic differential equations cou-

pled with a set of deterministic ordinary differential equations. The latter, which can be of arbitrary form,

are construed herein as constraints on the motion of the system driven by the stochastic excitation. Next,

employing a semi-classical approximation treatment for the WPI yields a deterministic constrained variational

problem to be solved numerically for determining the most probable path; and thus, for evaluating the system

joint response PDF in a computationally efficient manner. This is done in conjunction with a Rayleigh-Ritz

approach coupled with appropriate optimization algorithms. Several numerical examples pertaining to both

linear and nonlinear constraint equations are considered, including various multi-degree-of-freedom systems,

a linear oscillator under earthquake excitation and a nonlinear oscillator exhibiting hysteresis following the

Bouc-Wen formalism. Comparisons with relevant Monte Carlo simulation data demonstrate a relatively high

degree of accuracy.

Keywords: singular diffusion matrix; path integral; constrained variational problem; stochastic dynamics;

nonlinear system;

1. Introduction

Accurate response analysis of engineering dynamical systems necessitates an increasingly sophisticated

modeling of the system behavior and of the associated excitations. This includes consideration of strong

nonlinearities, complex hysteresis, stochastic loads, as well as a relatively high dimensionality of the system

response vector. Despite their versatility and implementation simplicity, the performance of purely numerical5

solution techniques, such as various Monte Carlo simulation (MCS) schemes (e.g., [1, 2]), for determining the
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system stochastic response is often hindered by the related excessive computational cost. In this regard, alter-

native semi-analytical methodologies, such as the recently developed Wiener path integral (WPI) technique

[3, 4], exhibit both a satisfactory accuracy degree and a tractable computational cost. In particular, the WPI

solution technique, which relies on functional integration concepts and on a variational formulation, is capa-10

ble of determining the joint response transition probability density function (PDF) of stochastically excited

multi-degree-of-freedom (MDOF) nonlinear systems, even when endowed with fractional derivative terms (e.g.,

[3–5]). Further, it can account for diverse non-white and non-Gaussian stochastic process modeling [6], while

it has been shown recently that the associated computational cost can be drastically reduced by employing

sparse representations for the system response PDF in conjunction with compressive sampling schemes and15

group sparsity concepts (e.g., [7–9]).

Nevertheless, the applicability of the WPI technique has so far been restricted to systems with non-singular

diffusion matrices. In fact, the general formulation of the technique involving the inversion of the governing

equation diffusion matrix does not allow for a straightforward extension to cases pertaining to singular diffusion

matrices, and thus, special mathematical treatments are required (e.g., [10–12]). Indicative examples, where20

such special treatments can be rather trivial, include casting the higher-order (e.g., second-order) governing

equation into a lower-order (e.g., first-order) form by introducing additional state variables, as well as modeling

non-white excitations via filter equations (e.g., [6, 13, 14]). In such cases, the limitation of singular diffusion

matrices can be readily bypassed (e.g., [15]) by enforcing compatibility conditions of a rather simple (almost

trivial) form between the auxiliary variables and the time-derivatives of the original variables. However, this25

is not always the case as these auxiliary equations are more than often of a complex form. Examples include

(but are not limited to) dynamical systems with only some of their DOFs forced, hysteretic models (e.g.,

Bouc-Wen [16]) with nonlinear auxiliary differential equations, and diverse energy harvesting systems such as

various electromechanical harvesters (e.g., [17]) and wave energy converters (e.g., [18]).

In this paper, the WPI solution technique is generalized to cope with a broad class of systems with30

singular diffusion matrices. In this regard, the governing equations of motion are represented herein as a

set of underdetermined stochastic differential equations (SDEs) coupled with a set of deterministic ordinary

differential equations (ODEs). The latter, which can be of arbitrary (nonlinear) form, are construed as

constraints on the motion of the system driven by the stochastic excitation (e.g., [19–21]). This yields a

constrained variational problem to be solved for the most probable path, and thus, the system joint response35

PDF is determined. Several numerical examples pertaining to both linear and nonlinear constraint equations

are considered, including MDOF systems with only some of their DOFs stochastically excited, a linear oscillator

under Kanai-Tajimi earthquake excitation, as well as a nonlinear oscillator exhibiting hysteresis following the

Bouc-Wen formalism. Direct comparisons with MCS data demonstrate a relatively high degree of accuracy.

2. Wiener path integral formalism aspects40

2.1. Preliminaries

This section serves as a brief overview of several aspects of the theory of SDEs and the associated Chapman-

Kolmogorov (C-K) and Fokker-Plank (F-P) equations. In this regard, consider a multi-dimensional first-order
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SDE of the general form

α̇ = A(α, t) + B(α, t)η(t) (1)

where the dot above a variable denotes differentiation with respect to time t and η(t) is a zero-mean and

delta-correlated process of intensity one; i.e., E[η(t)] = 0 and E[η(t)ηT(t+ τ)] = Iδ(τ) where I is the identity

matrix, and δ(t) is the Dirac delta function. Certain existence and uniqueness conditions related to Eq. (1)

dictate that the solution α = [αj ]n×1 is a Markov stochastic vector process [22, 23], for which the C-K equation

(e.g., [24])

p(αi+1, ti+1|αi−1, ti−1) =

∫ ∞
−∞

p(αi+1, ti+1|αi, ti)p(αi, ti|αi−1, ti−1)dαi (2)

is satisfied for any ti−1 < ti < ti+1. In Eq. (2), αi = α(ti) and p(αi+1, ti+1|αi−1, ti−1) denotes the transition

PDF of the process α(t). Next, if A and B are continuous functions of t, then α is a diffusion process [22]

and the following conditions hold true for any ε > 0 (e.g., [23, 25]), i.e.,

i) lim
∆t→0

∫
|αi+1−αi|<ε

p(αi+1, ti+1|αi, ti)dαi+1 = 0 (3)

ii) lim
∆t→0

∫
|αi+1−αi|<ε

(αi+1 −αi)p(αi+1, ti+1|αi, ti)dαi+1 = A(αi, ti) (4)

iii) lim
∆t→0

∫
|αi+1−αi|<ε

(αi+1 −αi)(αi+1 −αi)Tp(αi+1, ti+1|αi, ti)dαi+1 = B(αi, ti)B
T(αi, ti) (5)

where ∆t = ti+1 − ti. Further, employing the C-K Eq. (2) leads to the F-P Eq. (6) for the transition PDF

p = p(αi+1, ti+1|αi, ti), i.e.,

∂p

∂t
= −

∑
j

∂

∂αj
(Aj(α, t)p) +

1

2

∑
j,k

∂2

∂αj∂αk

(
B̃jk(α, t)p

)
(6)

where A(α, t) = [Aj(α, t)]n×1 is the drift vector, and B̃(α, t) = [B̃jk(α, t)]n×n := B(α, t)BT(α, t) denotes the

diffusion matrix (e.g., [22, 23, 26]), which is symmetric and positive semidefinite.

2.2. Wiener path integral and Lagrangian function

In this section, basic WPI formalism aspects are presented for completeness. The interested reader is

directed to [27–31] for more details. In the limit ∆t → 0, and assuming a non-singular diffusion matrix B̃,

the transition PDF associated with a diffusion process α(t) has been shown to admit a Gaussian distribution

(e.g., [26]) of the form

p(αi+1, ti+1|αi, ti) =

[√
(2π∆t)ndet

[
B̃(αi, ti)

]]−1

× . . .

exp

−1

2

[αi+1 −αi −∆tA(αi, ti)]
T
[
B̃(αi, ti)

]−1

[αi+1 −αi −∆tA(αi, ti)]

∆t


(7)

In passing, it is noted that the choice of Eq. (7) is not restrictive, and alternative non-Gaussian distributions

can also be employed (e.g., [32, 33]). Next, the probability that α(t) follows a specific path ᾱ(t) can be
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expressed as the limiting case of the probability of the compound event

P [ᾱ(t)] = lim
∆t→0
N→∞

P

[
N⋂
i=1

{
αi ∈ [ᾱi, ᾱi + [dαji]n×1]

}]
(8)

In Eq. (8), the time is discretized into N time points (slices) ∆t apart, while dαji denotes the infinitesimal

element along dimension j at time ti. Loosely speaking, Eq. (8) represents the probability of the process to

propagate through the infinitesimally thin tube surrounding ᾱ(t). In the following, considering deterministic

initial conditions, and employing Eq. (7) and the Markovian property of α(t), Eq. (8) becomes

P [ᾱ(t)] = lim
∆t→0
N→∞


N∏
i=1

p(ᾱi+1, ti+1|ᾱi, ti)
n∏
j=1

dαji


= lim

∆t→0
N→∞


 N∏
i=1

[√(2π∆t)ndet
[
B̃(ᾱi, ti)

]]−1 n∏
j=1

dαji

× . . .
exp

−1

2

N∑
i=1

[ᾱi+1 − ᾱi −∆tA(ᾱi, ti)]
T
[
B̃(ᾱi, ti)

]−1

[ᾱi+1 − ᾱi −∆tA(ᾱi, ti)]

∆t




= exp

− tf∫
t0

L(α, α̇)dt

 n∏
j=1

tf∏
t=t0

dαj(t)√
2π
(

det
[
B̃(α, t)

]) 1
n

dt

(9)

where

L(α, α̇) =
1

2
[α̇−A(α, t)]

T
[
B̃(α, t)

]−1

[α̇−A(α, t)] (10)

denotes the Lagrangian of the system. Further, the total probability that the process α starts from α0 at time

t0 and ends up at αf at tf takes the form of a functional integral, which “sums up” the probabilities associated

with each and every path that α can possibly follow (e.g., [28]). In this regard, denoting by C{α0, t0;αf , tf}

the set of all paths with initial state α0 at time t0 and final state αf at time tf , the transition PDF takes the

form

p(αf , tf |α0, t0) =

∫
C{α0,t0;αf ,tf}

exp

− tf∫
t0

L(α, α̇)dt

 n∏
j=1

D[αj(t)] (11)

where

D[αj(t)] =

tf∏
t=t0

dαj(t)√
2π
(

det
[
B̃(α, t)

]) 1
n

dt

(12)

is a functional measure.45

3. Wiener path integral formalism for structural/mechanical dynamical systems

3.1. WPI formulation

In this section, the formulation delineated in Sec. 2.2 is adapted to account for systems whose dynamics

is governed by second-order SDEs; see also [4, 6] for more details. Such cases include structural and/or
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mechanical dynamical systems with inertia terms in the respective equations of motion, which are generally

modeled as a set of n coupled nonlinear second-order SDEs of the form

Mẍ+ g(x, ẋ, t) = w(t) (13)

In Eq. (13), x = [xj(t)]n×1 is the system response displacement vector; M represents the n×n mass matrix; g =

[gj(x, ẋ, t)]n×1 is an arbitrary nonlinear vector-valued function, which can account also for hysteretic response

behaviors; and w is a white noise stochastic excitation vector process with E[w(t)] = 0 and E[w(t)wT(t−τ)] =50

Dδ(τ), where D ∈ Rn×n is a deterministic coefficient matrix.

Next, introducing a new variable v = ẋ, Eq. (13) can be cast, equivalently, into the form of Eq. (1) with

α =

x
v

 , A(α, t) =

 v

−M−1g(x,v, t)

 and B(α, t) = B =

0 0

0 M−1
√

D

 (14)

where the square root of matrix D is given by
√

D
√

D
T

= D. Clearly, the diffusion matrix B̃ = BBT

is singular (see Eq. (14)), and thus, the expression in Eq. (10) cannot be evaluated in a straightforward

manner. Nevertheless, this limitation due to the singularity of B̃ can be addressed by introducing delta-

functionals to enforce the compatibility equation ẋ = v (e.g., [6, 28, 29]). In particular, defining S(x,v, v̇) =

v̇ + M−1g(x,v, t) the transition PDF of α given by Eq. (11) becomes

p(αf , tf |α0, t0) =

∫
C{x0,v0,t0;xf ,vf ,tf}

exp

− tf∫
t0

1

2
[MS(x,v, v̇)]

T
D−1 [MS(x,v, v̇)] dt

 δ [ẋ− v]D[x(t)]D[v(t)]

(15)

For the derivation of Eq. (15), the relationship
(
M−1DM−T

)−1

= MTD−1M for an arbitrary non-singular

square matrix D has been taken into account. Following integration over all paths v(t), and adopting for

convenience in the ensuing analysis the notation g(x, ẋ, t) = g(x, ẋ), Eq. (15) becomes

p(xf , ẋf , tf |x0, ẋ0, t0) =

∫
C{x0,ẋ0,t0;xf ,ẋf ,tf}

exp

− tf∫
t0

L(x, ẋ, ẍ)dt

D[x(t)] (16)

where

L(x, ẋ, ẍ) =
1

2
[Mẍ+ g(x, ẋ)]

T
D−1 [Mẍ+ g(x, ẋ)] (17)

and D[x(t)] =
∏n
j=1D[xj(t)]. Note that the form of Eqs. (15)-(17) can accommodate also cases of singular

mass matrices M. This may be the case, for instance, when considering hysteresis models (e.g., Bouc-Wen) that

employ auxiliary additional state variables governed by first-order only equations (e.g., [34]). These first-order

equations can be directly cast into the form of Eq. (1), whereas inversion pertains to the non-singular part of55

M only; see also Sec. 5.2.

Further, it is readily seen that the singularity of the diffusion matrix B̃, encountered due to the state-

variable reformulation of the second-order Eq. (13) into the first-order Eq. (14), has been addressed in a

rather direct and straightforward manner by the introduction of the delta-functional. Specifically, owning to

the simple form of the compatibility equation ẋ = v between the original variable and the state variable,60

5



functional integration over the state variable v is performed in a direct (and rather trivial) manner. However,

singular diffusion matrices B̃ due to reasons other than state-variable reformulation (e.g., cases of systems

with only some of their DOFs excited, hysteresis modeling via additional auxiliary state equations, energy

harvesters with coupled electro-mechanical equations, etc.) are not amenable, in general, to a similar trivial

treatment. This is due to the significantly more complex form of the corresponding (compatibility) equations65

related to the singularities, and thus, a direct functional integration is not possible. To address this challenge,

the WPI-based solution technique is generalized and extended in Sec. 4 by relying on a constrained variational

formulation that can account for arbitrary forms of (compatibility) equations related to singular diffusion

matrices.

3.2. WPI solution treatment70

3.2.1. Most probable path approximation

In this section, the basic aspects of a variational technique are presented, which is typically referred to in

the theoretical physics literature as the semi-classical approximation [28, 29, 32, 35, 36]. The technique relies

on the concept of the “most probable path” (also referred to as classical path) for providing an approximation

of the WPI in Eq. (16). Specifically, the largest contribution to the functional integral of Eq. (16) comes from

the trajectory xc(t) for which the integral in the exponential, also known as stochastic action, is minimized

(e.g., [28]). According to calculus of variations (e.g., [37, 38]) this trajectory xc(t) with fixed endpoints satisfies

the extremality condition

δ

∫ tf

t0

L(x, ẋ, ẍ)dt = 0 (18)

which leads to the Euler-Lagrange (E-L) equations

∂L
∂xj
− ∂

∂t

∂L
∂ẋj

+
∂2

∂t2
∂L
∂ẍj

= 0, j = 1, ..., n (19)

with the set of boundary conditions

xj(t0) = xj,0 ẋj(t0) = ẋj,0

xj(tf ) = xj,f ẋj(tf ) = ẋj,f

j = 1, ..., n (20)

Next, solving Eqs. (19)-(20) yields the n-dimensional most probable path, xc(t), and thus, a single point of

the system response transition PDF is determined as [4]

p(xf , ẋf , tf |x0, ẋ0, t0) ≈ C exp

− tf∫
t0

L(xc, ẋc, ẍc)dt

 (21)

where C is a normalization constant. It can be readily seen by comparing Eqs. (16) and (21) that in the

approximation of Eq. (21) only one trajectory, i.e., the most probable path xc(t), is considered in evaluating the

path integral of Eq. (16). Regarding the degree of approximation associated with Eq. (21), direct comparisons

of Eq. (21) with pertinent MCS data related to various engineering dynamical systems have demonstrated75

satisfactory accuracy (e.g., [5–9, 17]).
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3.2.2. Rayleigh-Ritz solution technique for the most probable path

In general, Eqs. (19)-(20) cannot be solved analytically for the most probable path. Therefore, resorting

to numerical solution schemes for boundary value problems (BVPs) is often necessary. Indicatively, since xc

is the solution of the variational problem

minimize J (x, ẋ, ẍ) =

∫ tf

t0

L(x, ẋ, ẍ)dt (22)

or, in other words, an extremum for the functional J , a direct functional minimization formulation can be

employed in conjunction with a standard Rayleigh-Ritz solution technique (see [5, 39, 40]). In this regard,

x(t) is approximated by

x̂(t) = ψ(t) + Zh(t) ≈ x(t) (23)

The function ψ(t) is chosen so that it satisfies the boundary conditions, while the trial functions h(t) =

[hl(t)]L×1 should vanish at the boundaries, i.e., h(t0) = h(tf ) = 0; Z ∈ Rn×L is a coefficient matrix and L is

the chosen number of trial functions considered. Utilizing a vectorized form of Z, Eq. (23) is cast, equivalently,

as

x̂(t) = ψ(t) + H(t)z (24)

with

z =


ZT

1

ZT
2

...

ZT
L

 ∈ RnL and H(t) =


hT(t) 0 . . . 0

0 hT(t) . . . 0
...

...
. . .

...

0 0 . . . hT(t)

 (25)

where Zl denotes the lth row of matrix Z and H(t) is an n × nL time-dependent matrix. Clearly, there is a

wide range of choices for functions ψ and h. In the ensuing analysis, the Hermite interpolating polynomials

ψj(t) =

3∑
k=0

aj,kt
k (26)

are adopted, i.e., ψ(t) = [ψj(t)]n×1, where the n × 4 coefficients aj,k are determined by the n × 4 boundary

conditions in Eq. (20). For the trial functions, the shifted Legendre polynomials given by the recursive formula

`q+1(t) =
2q + 1

q + 1

(
2t− t0 − tf
tf − t0

)
`q(t)−

q

q + 1
`q−1(t), q = 1, ..., L− 1 (27)

are employed, which are orthogonal in the interval [t0, tf ], with `0(t) = 1; and `1(t) = (2t− t0 − tf )/(tf − t0).

The trial functions take the form

hl(t) = (t− t0)2(t− tf )2`l(t) (28)

where the factor (t − t0)2(t − tf )2 multiplies the lth-order Legendre polynomial `l(t) to yield the lth trial

function hl(t). Note that hl(t) is a polynomial of order l + 4 and vanishes at the boundaries. Clearly, each

component x̂j(t) of x̂(t) in Eq. (23) is a polynomial of order up to L+ 4 in t .80

A practical advantage of the Rayleigh-Ritz solution technique is that the variational problem (functional

minimization) of Eq. (22) degenerates to an ordinary minimization problem of a function that depends on a
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finite number of variables [38]. Specifically, the functional J , dependent on the n functions x(t) (and their

time derivatives), is cast in the form

J(z) := J (x̂, ˙̂x, ¨̂x) (29)

which depends on a finite number of nL coefficients z. The corresponding optimization problem takes the

form

min
z
J(z) (30)

Further, the extremality condition in Eq. (18) is replaced by the first-oder optimality condition

∇J(z) = 0 (31)

which represents essentially a set of nL nonlinear algebraic equations that need to be solved numerically. Once

the solution z∗ of the optimization problem in Eq. (30) is obtained, the most probable path xc is determined

via Eq. (24). Obviously, there is a wide range of standard numerical optimization schemes to be employed

for obtaining the solution z∗. Indicatively, these range from gradient based techniques (e.g., [41]) to rather

heuristic global optimization methods (e.g., [42, 43]).85

3.2.3. Computational efficiency aspects

Irrespective of whether the E-L Eqs. (19)-(20) are used or Eq. (31) is employed, solving the related de-

terministic BVP for given boundary conditions yields a single point of the joint response PDF via Eq. (21).

According to a brute-force implementation of the WPI technique, for a given time instant tf , an effective do-

main of values (xf , ẋf ) is considered for the joint response PDF p(xf , ẋf , tf |x0, ẋ0, t0). Next, discretizing the90

effective domain using R points in each dimension, the joint response PDF values are obtained corresponding

to the points of the mesh. Specifically, for an n-DOF system with 2n stochastic dimensions (n displacements

and n velocities) the number of BVPs to be solved is R2n. It is clear that the computational cost becomes

prohibitive for relatively high-dimensional systems. However, efficient implementations, such as in [7], can

be utilized in conjunction with the WPI technique. Specifically, employing a polynomial expansion for the95

joint response PDF yields a number of BVPs to be solved equal to the number of the expansion coefficients.

This implementation has been shown to follow approximately a power-law function of the form ∼ (2n)d/d!

(where d is the degree of the polynomial), which, depending on the value of n, can be orders of magnitude

smaller than R2n [7]. Moreover, it has been recently shown in [8] that a compressive sampling treatment in

conjunction with an appropriate optimization algorithm can further reduce drastically the required number of100

deterministic BVPs to be solved numerically.

4. Generalization of the Wiener path integral formulation to account for singular diffusion

matrices: A constrained variational problem

4.1. WPI formulation accounting for singular diffusion matrices

In this section, the WPI solution technique delineated in Sec. 3 is extended to account for a general class

of systems with singular diffusion matrices. In this regard, a novel WPI based variational formulation with
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constraints is developed. Specifically, consider in the following the general class of structural/mechanical

systems whose governing equation of motion takes the form

Mẍ+ g(x, ẋ) =

w(t)

0

 (32)

where M is an n×n, (potentially singular) mass matrix, and g is a nonlinear vector valued function. Indicative

examples of engineering systems whose dynamics is described by Eq. (32) include, but are not limited to,

structures subject to excitations applied to some (and not all) of their DOFs, hysteretic (e.g., Bouc-Wen)

systems modeled via additional auxiliary state equations [34], and certain electromechanical energy harvesters

[17]. Next, comparing Eqs. (13) and (32), it can be readily seen that the D matrix corresponding to the

right-hand-side of Eq. (32), and defined as

Dδ(τ) = E

w(t)

0

[wT(t+ τ) 0
] =

E [w(t)wT(t+ τ)
]

0

0 0

 =

Drr 0

0 0

 δ(τ) (33)

is singular, and thus, the Lagrangian of Eq. (17) cannot be determined in a straightforward manner. Note105

that the symbol Drr is used to denote the non-singular square sub-matrix of D.

In the ensuing analysis, the singularity of D is addressed by partitioning the system of Eq. (32) into two

coupled subsystems: one that contains the equations corresponding to vector w on the right-hand-side of

Eq. (32) and another referring to the equations that correspond to the zero entries on the right-hand-side of

Eq. (32); this yields Mrẍ+ gr(x, ẋ)

Msẍ+ gs(x, ẋ)

 =

w(t)

0

 (34)

Note that the upper subsystem, hereinafter referred to as the r−system, constitutes an underdetermined

system of n − m SDEs and the lower subsystem, hereinafter referred to as the s−system, represents an

underdetermined system of m homogeneous ODEs. Clearly, matrix Mr ∈ R(n−m)×n consists of the first n−m

rows of matrix M, while Ms ∈ Rm×n consists of the last m rows of M. Further, by recasting Eq. (32) into110

the form of Eq. (34), it can be argued that the motion of the dynamical system in Eq. (32) is governed by the

r−system of equations constrained by the s−system of equations.

Next, defining x(t) = [xr(t) xs(t)]
T, Mr = [Mrr Mrs] and Ms = [Msr Mss], where Mrr, Mrs, Msr

and Mss are square matrices, and employing a δ-functional as in Sec. 3.1, the WPI for the system response

PDF takes the form

p(αf , tf |α0, t0) =

∫
C{αf ,tf |α0,t0}

exp

− tf∫
t0

1

2
[Sr(α, α̇)]

T
D−1
rr [Sr(α, α̇)] dt

 δ [Ss(α, α̇)]D[xr(t)]D[xs(t)]

(35)

where α = [xr,xs, ẋr, ẋs]
T, while

Sr(α, α̇) = Mrrẍr + Mrsẍs + gr(α) (36)
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and

Ss(α, α̇) = Msrẍr + Mssẍs + gs(α) (37)

Following a similar procedure as in Sec. 3.1, the aim is to integrate over paths xs(t) and to obtain a path

integral formulation involving xr(t) only. However, this is not generally possible because the argument of the

δ-functional in Eq. (35) is not merely a trivial compatibility relationship, as in Sec. 3.1, but a rather complex

general function of xs. To address this challenge, the equation Ss(α, α̇) = 0 is enforced explicitly and takes

the form of a constraint φ(x, ẋ, ẍ) = 0 given by

φ(x, ẋ, ẍ) = Msẍ+ gs(x, ẋ) (38)

In this regard, the transition PDF can be expressed in the compact form

p(xf , ẋf , tf |x0, ẋ0, t0) =

∫
C{x0,ẋ0,t0;xf ,ẋf ,tf |φ=0}

exp

− tf∫
t0

Lr(x, ẋ, ẍ)dt

D[x(t)] (39)

where

Lr(x, ẋ, ẍ) =
1

2
[Mrẍ+ gr(x, ẋ)]TD−1

rr [Mrẍ+ gr(x, ẋ)] (40)

and C{x0, ẋ0, t0;xf , ẋf , tf |φ = 0} denotes the set of all paths, with initial state (x0, ẋ0) at time t0 and final

state (xf , ẋf ) at time tf , which satisfy the constraint φ(x, ẋ, ẍ) = 0.

4.2. Constrained variational problem solution treatment115

Following the WPI formulation of Sec. 4.1, determining the most probable path is pursued next by seeking

for the solutions of the r−system that satisfy also the constraints of the s− system. This leads to the

formulation of a constrained variational problem for the determination of the most probable path xc, i.e.,

minimize Jr(x, ẋ, ẍ) =

∫ tf

t0

Lr(x, ẋ, ẍ)dt (41)

subject to φ(x, ẋ, ẍ) = 0 (42)

where the Lagrangian Lr in Eq. (41) corresponds to the r−system only and is given by Eq. (40), and the

constraint function φ is given by Eq. (38).

Constrained variational problems of the form of Eqs. (41)-(42) can be solved by employing the general

Lagrange multipliers approach (e.g., [44, 45]). This leads to an unconstrained variational problem by consid-

ering the auxiliary Lagrangian L∗(x, ẋ, ẍ) = Lr(x, ẋ, ẍ) + λ(t)φ(x, ẋ, ẍ). This unconstrained problem yields120

a system of n Euler-Lagrange equations, similar to the ones in Eq. (19)-(20), to be solved together with the

m constraint functions in Eq. (42) for the n unknown functions x(t) and the m unknown Lagrange multiplier

functions λ(t); see for instance [17]. In practice, however, the reformulation of this complex system of n+m

equations into an equivalent first-order system, as dictated by most numerical BVP solvers, requires multiple

time differentiations of the constraint functions. As a result, the time derivatives of the constraints are ful-125

filled, but not the constraints themselves. This is a common limitation in several numerical solution methods
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for BVPs as highlighted in [46]. Therefore, in the ensuing analysis, attention is directed to a Rayleigh-Ritz

solution approach for the determination of the most probable path.

Specifically, following Sec. 3.2.2, the polynomial expansion of Eq. (24) is utilized for the response vector

x(t). This reduces the functional Jr(x, ẋ, ẍ) of Eq. (41) to a function

Jr(z) := Jr(x̂, ˙̂x, ¨̂x) (43)

which depends on the vectorized expansion parameters z ∈ Rp, where p = nL. Further, by defining the

functions

φ̂(z, t) := φ(x̂, ˙̂x, ¨̂x) (44)

the constraints in Eq. (42) are replaced by φ̂(z, t) = 0. The adoption of the Rayleigh-Ritz solution approach

simplifies the constrained variational problem in Eq. (41)-(42) to an ordinary constrained optimization problem

of the form

min
z∈Rp

Jr(z) (45)

subject to φ̂(z, t) = 0 ∀ t ∈ [t0, tf ] (46)

and facilitates further its numerical treatment. Taking into account Eq. (24), the solution z∗ to the above

problem yields the most probable path in the form x̂c(t) = ψ(t) + H(t)z∗. Next, a single point of the system

response transition PDF can be determined via the semi-classical approximation of Eq. (21) as

p(xf , ẋf , tf |x0, ẋ0, t0) ≈ C exp

− tf∫
t0

Lr(x̂c, ˙̂xc, ¨̂xc)dt

 (47)

where C is a normalization constant.

4.3. Linear constraints130

The special case of function gs in Eq. (34) taking the linear form gs(x, ẋ) = Csẋ+Ksx, where Cs ∈ Rm×n

and Ks ∈ Rm×n, leads to linear constraint functions in Eq. (42). This considerable simplification facilitates

a computationally efficient numerical treatment of the optimization problem of Eqs. (45)-(46). In particular,

a solution is pursued by restricting the optimization within the space of solutions of Eq. (46) via a nullspace

approach. Specifically, linearity of the constraint equations ensures that φ̂(z, t) is a vector of m polynomial

functions of t, each of degree L + 4 (see Eqs. (23)-(25), (38) and (44)), with coefficients linear in the nL

unknown expansion parameters z. Setting these polynomial coefficients equal to zero yields a set of m(L+ 4)

linear equations with p = nL unknown variables. Next, these equations are cast as a linear system of the form

Fz = d (48)

where F ∈ Rs×p, d ∈ Rs and s = m(L+ 4). Of course, for any well-posed constrained optimization problem,

the number of independent constraints is smaller than the dimension of z. For the herein concerned problem,

this yields m(L+ 4) < p, which provides the lower bound L > 4m
n−m for the number L of trial functions used in
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the polynomial expansion. The system in Eq. (48) is underdetermined, while F may not have full row rank,

i.e., rF ≤ s. It is now possible to restrict minimization of the objective function Jr = Jr(z), where z ∈ Rp,

to the set of solutions of Eq. (48) that lie on a lower dimensional space of dimension p − rF . To elaborate

further, note that the vector space U ⊆ Rp of solutions of the system Fz = 0, can be fully described with

the aid of a basis S = [s1 s2 ... sp−rF ] for the nullspace of F [47], where S ∈ Rp×(p−rF ). In this regard, any

element z ∈ U can be represented by an element v ∈ V ⊆ Rp−rF as z = Sv, and the vector space Ud ⊆ Rp

of solutions of Fz = d can be obtained as an affine transformation of U [48]. More specifically, the solutions

z ∈ Ud of Eq. (48) can be represented as

z = Sv + zp (49)

where zp is any particular solution of Eq. (48) [47, 48]; see also [49]. This approach enables the corresponding

constrained optimization problem

min
z∈Rp

Jr(z) subject to Fz = d (50)

of dimension p to be recast into a lower dimensional unconstrained problem of dimension p− rF as

min
v∈Rp−rF

Jr(Sv + zp) (51)

Note that the minimizer z∗ of Eq. (50) can be obtained by the minimizer v∗ of Eq. (51) using the relationship

in Eq. (49).

Further, it is worth highlighting the special case of a linear oscillator with non-singular diffusion matrix

(unconstrained problem), where the most probable path can be derived in closed-form. Specifically, the linear

oscillator yields a quadratic objective function in Eq. (29) that can be written as

J(z) =
1

2
zTQz + bTz (52)

where matrix Q and vector b can be calculated numerically (see Eqs. (17),(22),(24) and (29)). Given that Q is

positive definite, J(z) has the unique minimizer z∗ = −Q−1b and the most probable path can be determined

in closed-form via Eq. (24). This result can be utilized in conjunction with the nullspace approach described

earlier in this section, to determine the most probable path of a linear oscillator with singular diffusion matrix

in closed-form as well. This is the case where the constraint function is linear (gs(x, ẋ) = Csẋ + Ksx) and

function gr in Eq. (34) is also linear, i.e., gr(x, ẋ) = Crẋ+ Krx, where Cr ∈ R(n−m)×n and Kr ∈ R(n−m)×n,

while the optimization problem of Eq. (51) takes the form

min
v∈Rp−rF

1

2
[Sv + zp]

TQ[Sv + zp] + bT[Sv + zp] (53)

Next, solving the problem in Eq. (53) with respect to v leads to the unique stationary point

v∗ = −(STQS)−1[zT
p QS + bTS] (54)

which, in conjunction with Eqs. (24) and (49), yields the following closed-form expression for the most probable

path, i.e.,

x̂c(t) = ψ(t) + H(t)
[
S(STQS)−1[zT

p QS + bTS]− zp
]

(55)
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4.4. Nonlinear constraints

In the more general case of arbitrary nonlinear constraints, it is possible to formulate an optimization

problem with nonlinear equality constraints to be solved by an appropriate numerical technique, such as

a Newton scheme in conjunction with a Lagrange multiplier approach for the enforcement of constraints.

Specifically, a necessary and sufficient condition for Eq. (46) to hold is

ξ(z) :=

√√√√√ tf∫
t0

φ̂
2
(z, t)dt = 0 (56)

where integration and square root are performed element-wise, and thus, the corresponding optimization

problem can be formulated as

min
z∈Rp

Jr(z) subject to ξ(z) = 0 (57)

Next, two typically utilized methods for the solution of nonlinear optimization problems with equality con-

straints of the form of Eq. (57) are presented.135

4.4.1. Sequential Quadratic Programming (SQP)

The optimization problem with equality constraints in Eq. (57) can be solved by using a Lagrange multiplier

approach and by employing the corresponding Karush-Kuhn-Tucker (KKT) conditions [41]. To this aim, the

Lagrangian function LM is defined as

LM (z,λ) = Jr(z)− λTξ(z) (58)

where λ ∈ Rm is a vector of Lagrange multipliers, and the Jacobian of the constraints is denoted as

A(z)T = [∇ξ1(z),∇ξ2(z), ...,∇ξm(z)] (59)

The first-order KKT conditions for the optimization problem with equality constraints in Eq. (57) take the

form of an n+m system of equations with n+m unknowns z and λ as

F (z,λ) =

∇Jr(z)−A(z)Tλ

ξ(z)

 = 0 (60)

while the Jacobian of Eq. (60) becomes

F ′(z,λ) =

∇2
zzLM (z,λ) −A(z)T

A(z) 0

 (61)

Next, a Newton scheme is utilized for the solution of the KKT system in Eq. (60). The corresponding Newton

step at the kth iteration (zk,λk) takes the formzk+1

λk+1

 =

zk
λk

+

pk
pkλ

 (62)

13



where pk and pkλ are obtained by solving the Newton-KKT system∇2
zzLM (zk,λk) −A(zk)T

A(zk) 0

pk
pkλ

 =

−∇Jr(zk) +A(zk)Tλk

−ξ(zk)

 (63)

Solving the system in Eq. (63) and utilizing Eqs. (60) and (62), the update formulae for λk+1 and zk+1 are

given by

λk+1 =
[
AkB

−1
k AT

k

]−1 [−ξk +AkB
−1
k Gk

]
(64)

pk = B−1
k

(
AT
kλ

k+1 −Gk
)

(65)

zk+1 = zk + αkp
k (66)

where Ak := A(zk) ∈ Rm×p, Bk := ∇2
zzLM (zk,λk) ∈ Rp×p, ξk := ξ(zk) ∈ Rm and Gk := ∇Jr(zk) ∈ Rp.

In passing, it is noted that the above proposed Newton solution scheme for the KKT system of Eq. (60)

can be identified as a Sequential Quadratic Programming (SQP) methodology, which is a broader class of

optimization algorithms capable of treating both equality and inequality constraints [41]. Further, in Eq. (66),140

pk is the step direction and αk is a step size parameter that is equal to 1 in the standard implementation

of the scheme (see Eq. (62)). In practice, however, a smaller value is typically chosen for the step size αk as

the iterations approach the local minimum. This yields faster convergence potentially, while the value of αk

at each iteration can be determined by an appropriate line search algorithm. In the following, a line search

scheme based on Wolfe conditions and described in [50] is adopted in the numerical examples. Moreover,145

regarding numerical implementation of the optimization scheme, the standard Broyden-Fletcher-Goldfarb-

Shanno (BFGS) formula [51, 52] is employed herein for approximating the inverse of the Hessian matrix

∇2
zzLM ; see also [41] for a broader perspective.

4.4.2. Augmented Lagrangian Method (ALM)

A relatively popular alternative approach for the solution of the constrained optimization problem in

Eq. (57) is the Augmented Lagrangian Method (ALM) [53–55]. The ALM approximates the solution by

successively minimizing the augmented Lagrangian function

LA(z,λ;µ) = Jr(z)−
m∑
j=1

λjξj(z) +
µ

2

m∑
j=1

ξ2
j (z) (67)

for a sequence of penalty factors µ with increasing values. Therefore, a sequence of unconstrained subproblems

is formulated, where the solution of the previous problem is used as the initial guess for the next one, i.e.,

zk+1 = arg min
z∈Rp

zinit=z
k

LA(z,λk;µk) (68)

where the Lagrange multiplier vector λ = [λj ]m×1 at each step is given by the explicit estimate

λk+1 = λk − µkξ(zk) (69)

and zinit denotes the initial guess for the solution of the corresponding optimization problem. The ALM150

has shown to improve the ill-posedeness of the quadratic penalty method (QPM), as it can approximate the
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solution of the original problem even with moderate values of the penalty factor µ [41]. Also, the augmented

Lagrangian function in Eq. (67) can be derived as the dual of the corresponding quadratic penalty function of

the QPM, as shown in [56].

5. Numerical Examples155

To assess the reliability of the herein developed technique for determining the response PDF of stochastically

excited MDOF systems with singular diffusion matrices, two indicative examples are considered in this section.

The first example pertains to a 2-DOF oscillator, where only one DOF is stochastically excited. It is shown that

the special case of a linear oscillator under Kanai-Tajimi earthquake excitation, which yields a singular diffusion

matrix, can also be cast in that form and treated under the same framework. The second example refers to a160

single-degree-of-freedom (SDOF) Bouc-Wen hysteretic oscillator, where hysteresis is modeled by introducing

an additional auxiliary state equation. The WPI-based system response PDF estimates are compared with

pertinent MCS data (10, 000 realizations) for assessing the accuracy of the herein developed technique. In

this regard, a standard fourth-order Runge-Kutta numerical integration scheme is employed for solving the

governing equations of motion within the MCS context.165

5.1. 2-DOF oscillator with only one DOF stochastically excited

The following 2-DOF oscillator with only one DOF stochastically excited is considered in the present

example. Specifically, the equation of motion takes the form

Mẍ+Cẋ+Kx+ εgnl(x, ẋ) =

w(t)

0

 (70)

where

M =

1 0

0 1

 , C =

 0.2 −0.1

−0.1 0.1

 , K =

 2 −1

−1 1

 (71)

and S0 = 0.1, whereas three different forms are considered next for the nonlinear function g(x, ẋ).

5.1.1. Linear oscillator with linear constraints

First, a linear version of the 2-DOF oscillator of Eq. (70) with ε = 0 is considered. The WPI technique in

conjunction with the closed-form expression in Eq. (55) for the most probable path is utilized, and the joint170

response PDF p(x, ẋ) is calculated for two indicative time instants t = 2 s and t = 8 s. The corresponding

marginal response PDFs are shown in Fig. 1 demonstrating a high degree of accuracy based on comparisons

with the exact solution obtained by numerically solving the related Lyapunov differential equation for the

time-dependent response covariance matrix (see for instance [34]).
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Figure 1: Marginal response PDFs of a stochastically excited 2-DOF linear oscillator with linear constraints; comparisons with

exact solutions.

5.1.2. Linear oscillator under Kanai-Tajimi earthquake excitation175

A widely utilized earthquake excitation model relates to the Kanai-Tajimi power spectrum introduced in

[57, 58] and further generalized in [59] and [60]. The rationale behind the Kanai-Tajimi modeling relates to

approximating the bedrock acceleration as a white noise process filtered through the soil deposit, which is

modeled as a SDOF oscillator, i.e.,

ÿ + 2ζgωg ẏ + ω2
gy = −w(t) (72)

where y, ẏ and ÿ are the ground displacement, velocity and acceleration, respectively, relative to the bedrock,

while w(t) is a white noise process with E[w(t)w(t− τ)] = 2πS0δ(τ). In Eq. (72), ζg is the damping ratio and

ωg is the natural frequency of the ground whose values are taken equal to ζg = 0.6 and ωg = 5π rad/s [60].

The absolute ground acceleration in this case can be expressed as

ẍg(t) = ÿ(t) + w(t) (73)
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characterized by the Kanai-Tajimi power spectrum

Sẍg
(ω) = S0

ω4
g + 4ζ2

gω
2
gω

2

(ω2
g − ω2)2 + 4ζ2

gω
2
gω

2
(74)

Next, the equation of motion of a linear SDOF oscillator, with mass m0, damping coefficient c0 and stiffness

k0, under Kanai-Tajimi earthquake excitation takes the form

m0ẍ+ c0ẋ+ k0x = −m0ẍg(t) (75)

Further, dividing Eq. (75) by m0 and considering Eqs. (72) and (73), the overall system can be written in the

form

Mz̈ + Cż + Kz =

−1

−1

w(t) (76)

where

z =

x
y

 , M =

1 1

0 1

 , C =

c0/m0 0

0 2ζgωg

 and K =

k0/m0 0

0 ω2
g

 (77)

Clearly, the white noise process w(t) in Eq. (76) can be equivalently expressed as a sum of two independent

white noise processes, i.e., w(t) = w1(t) + w2(t). In this regard, Eq. (76) becomes

Mz̈ + Cż + Kz =

−1 −1

−1 −1

w1(t)

w2(t)

 (78)

and hence, Eq. (76) takes the form of Eq. (13) with w(t) = [w1(t), w2(t)]T. It can be readily seen in Eq. (78)

that the white noise vector process [w1(t), w2(t)]T is multiplied by a rank-one matrix. Thus, matrix D in

Eq. (14) is also rank-one (it has the value of 2 in all its entries) which leads to a singular diffusion matrix B̃.

Next, Eq. (78) can be multiplied by the non-singular transformation matrix

T =

 1 0

−1 1

 (79)

and written, alternatively, as

TMz̈ + TCż + TKz = T

−1 −1

−1 −1

w1(t)

w2(t)

 =

−1 −1

0 0

w1(t)

w2(t)

 =

−w(t)

0

 (80)

Note that Eq. (80) has exactly the form of Eq. (70) with ε = 0, and thus, can be treated by the herein

developed technique. Further, since Eq. (80) is linear, the solution approach of Sec. 4.3 can be applied, where

the most probable path is given by Eq. (55) in closed form. The corresponding marginal response PDFs are

shown in Fig. 2 for an oscillator with parameters m0 = 1, c0 = 0.2, k0 = 1 and S0 = 0.5. Comparisons with

MCS data obtained by utilizing the spectral representation method [61] to generate realizations compatible180

with the Kanai-Tajimi power spectrum of Eq. (74) demonstrate a high degree of accuracy.
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Figure 2: Marginal response PDFs of a SDOF linear oscillator under Kanai-Tajimi earthquake excitation; comparisons with MCS

data (10, 000 realizations).

5.1.3. Nonlinear oscillator with linear constraints

Next, a version of the 2-DOF oscillator of Eq. (70) with stiffness and damping nonlinearities in the first

equation and linear second equation is considered; thus, yielding linear constraints in the herein developed

computational framework. In particular, the nonlinear function gnl(x, ẋ) takes the form

gnl(x, ẋ) =

c11ẋ
3
1 + k11x

3
1

0

 (81)

where x1 is the first component of the response vector x, c11 and k11 are the upper left elements of matrices

C and K, respectively, and the magnitude of the nonlinearity ε is taken equal to 0.5.
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Figure 3: Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator with linear constraints; comparisons

with MCS data (10, 000 realizations).

The WPI technique in conjunction with the methodology described in Sec. 4.3 is utilized next, and the185

joint response PDF p(x, ẋ) is calculated for two indicative time instants t = 2 s and t = 8 s. The corresponding

marginal response PDFs are presented in Fig. 3, and compared with pertinent MCS data (10, 000 realizations).

The accuracy degree exhibited by the WPI is generally high, whereas slight deviations from the MCS-based

estimates, such as in Fig. 3c, may be attributed not only to the various approximations involved in the WPI

technique (see Sec. 3), but also to the specific accuracy characterizing the MCS-based estimate given the190

utilized number of realizations.

5.1.4. Nonlinear oscillator with nonlinear constraints

Further, a third version of the 2-DOF oscillator in Eq. (70) with stiffness nonlinearities in both equations

is considered; thus, yielding nonlinear constraints in the proposed computational framework. In this case, the

nonlinear function gnl(x, ẋ) takes the form

gnl(x, ẋ) =

k11x
3
1

k22x
3
2

 (82)
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where x1 and x2 are the first and second components of the response vector x, k11 and k22 are the upper left

and lower right elements of matrix K, respectively, and the nonlinearity magnitude ε is taken equal to 0.5.

The WPI technique in conjunction with the SQP method described in Sec. 4.4.1 is utilized next. In this195

regard, each point of the joint response PDF p(x, ẋ) at time t = 1 s is obtained as described in Sec. 3.2.3 by

utilizing the SQP algorithm combined with a line search scheme and by employing the BFGS formula, with an

initial guess zinit = 0. Following integration of the joint response PDF, the corresponding marginal PDFs are

obtained and presented in Fig. 4. Comparisons with pertinent MCS data (10, 000 realizations) demonstrate a

high degree of accuracy.200
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Figure 4: Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at t = 1 s

and t = 3 s; comparisons with MCS data (10,000 realizations).

Further, the joint response PDFs p(x1, x2), p(x1, ẋ1) and p(x2, ẋ2) are also shown in Figures 5, 6 and 7,

respectively, for the two time instants t = 1 s and t = 3 s. In a similar manner as before, satisfactory accuracy

is observed based on comparisons with corresponding MCS data.
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(a) MCS - t = 1 s (b) WPI - t = 1 s

(c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 5: Joint response PDF p(x1, x2) of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at t = 1

s and t = 3 s.
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(a) MCS - t = 1 s (b) WPI - t = 1 s

(c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 6: Joint response PDF p(x1, ẋ1) of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at t = 1

s and t = 3 s.
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(a) MCS - t = 1 s (b) WPI - t = 1 s

(c) MCS - t = 3 s (d) WPI - t = 3 s

Figure 7: Joint response PDF p(x2, ẋ2) of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at t = 1

s and t = 3 s.

Next, the WPI technique in conjunction with the ALM method described in Sec. 4.4.2 is utilized. In this

context, each point of the joint response PDF p(x, ẋ) at time t = 1 s is obtained by successively minimizing the205

augmented Lagrangian function of Eq. (67), for the sequence of penalty factors with increasing values µ = 3k

for k = 0, 2, 4, 6, 8, 10, 12. Following integration of the joint response PDF, the corresponding marginal PDFs

are obtained for three indicative values of µ and presented in Fig. 8. A comparison with pertinent MCS results

(10, 000 realizations) shows the convergence of the marginal PDFs to the MCS-based estimates for increasing

values of µ.210

It is seen that both the SQP and the ALM optimization schemes of sections 4.4.1 and 4.4.2, respectively,

perform satisfactorily in solving the problem of Eq. (57) with relatively high accuracy. Nevertheless, there

are cases where the SQP algorithm may not converge to the optimum value for various reasons, such as poor

choice of the initial guess or non-smooth and numerically ill-behaved governing / constraint equations. In such

cases, the ALM or an appropriate combination of the SQP and ALM schemes may yield a more robust and215

efficient solution approach. An indicative example is considered next.
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Figure 8: Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator with nonlinear constraints at t = 1 s for

increasing values of the penalty factor µ; comparisons with MCS data (10, 000 realizations).

5.2. Bouc-Wen hysteretic oscillator

A SDOF Bouc-Wen nonlinear oscillator, which has been widely utilized in engineering dynamics for model-

ing systems exhibiting hysteresis, is considered in this numerical example. The introduction of the smooth and

versatile Bouc-Wen hysteretic model [62, 63] was followed by its successful application to various engineering220

mechanics related fields. Besides its versatility in efficiently capturing a broad range of hysteretic behaviors,

corresponding equivalent linear elements can be readily determined in an explicit manner [64]. Specifically, a

statistical linearization method (e.g., [34]) was proposed in [65] that involved deriving closed-form expressions

for the equivalent linear elements of the Bouc-Wen model. Furthermore, a wavelet-based statistical lineariza-

tion method was developed in [66] to determine the response evolutionary power spectrum. Indicatively, the225

Bouc-Wen formalism and its variants have been employed recently for modeling the inelastic behavior of steel

beams with hysteretic damping [67], while in [68] a Bouc-Wen model compatible with plasticity postulates has

been developed. A detailed presentation of the applications and the extensions of the Bouc-Wen model can

be found in [16] and in review papers such as [69] and [70].
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The Bouc-Wen oscillator is generally described by the system of coupled differential equations

ẍ+ 2ζ0ω0ẋ+ αω2
0x+ (1− α)ω2

0z = w(t) (83)

ż + γ|ẋ|z|z|ν−1 + βẋ|z|ν −Aẋ = 0 (84)

where in Eq. (83) α can be viewed as a form of post-yield-to-pre-yield stiffness ratio. In the Bouc-Wen model,230

the additional auxiliary state z is related to the response x via Eq. (84). Various both softening and hardening

behaviors can be modeled by appropriately choosing the constant parameters γ, β and A (see e.g., [70]).

Clearly, Eqs. (83)-(84) can be construed as a coupled system of a SDE (Eq. (83)) and a homogeneous

ODE (Eq. (84)). This can be readily cast in the form of Eq. (32), and thus, treated by the herein developed

solution technique. In passing, it is worth mentioning that, due to Eq. (84) being first-order, the system235

augmented mass matrix M in Eq. (13) is singular. Nevertheless, this poses no difficulties in applying the

solution technique in a rather straightforward manner; see also discussion following Eq. (17). Moreover, it is

noted that the Bouc-Wen model in Eqs. (83) and (84) has some special characteristics that affect the form

of the corresponding optimization problem. In particular, Eq. (83) is linear, which yields a corresponding

objective function of a quadratic form (see Eq. (52)). This suggests that the SQP method presented in240

Sec. 4.4.1 is expected to perform satisfactorily, as it is essentially a quasi-Newton method. However, due

to the form of Eq. (84) containing multiplicative relations involving absolute value functions, the constraint

function takes a relatively complex form that can be locally non-differentiable; thus, leading to a potentially

ill-posed optimization problem.

Next, for the parameter values ζ0 = 0.01, ω0 = 1, α = 0.01, γ = 0.5, ν = 1, β = 0.5 and A = 1, the245

joint response PDF p(x, z, ẋ) is obtained by employing the SQP method of Sec. 4.4.1 with an initial guess

zinit = 0. The corresponding marginal PDFs of the response displacement x and velocity ẋ are plotted in

Fig. 9 (line with x markers) for an indicative time instant t = 10 s. Clearly, based on comparisons with

pertinent MCS data, this solution approach does not exhibit a satisfactory accuracy degree. As explained

earlier, this may be due to a potentially ill-posed optimization problem, or due to the initial guess zinit not250

being sufficiently close to the optimum. In this regard, it can be argued that an ALM solution treatment

may be, perhaps, a more appropriate choice. Specifically, for a sequence of penalty factors starting from zero,

the initial ALM optimization problem becomes unconstrained and convex (quadratic form); thus, yielding a

unique solution. Next, given that the sequence of penalty factors is sufficiently long and densely discretized,

the ALM solution approach could potentially converge to the global optimum, at the expense, however, of255

considerable computational cost due to the large number of optimization subproblems; see Eq. (68).
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Figure 9: Marginal response PDFs of a SDOF Bouc-Wen oscillator at t = 10 s by employing various optimization schemes;

comparisons with pertinent MCS data (10,000 realizations).

In this regard, an alternative hybrid solution approach is proposed, which attempts to benefit from the

advantages of both the ALM and the SQP schemes. Specifically, an ALM run is performed first by using a

small number of penalty factors with moderate values and by setting large convergence tolerances to accelerate

convergence. Of course, this ALM step is not expected to yield the optimum with high accuracy (see line with o260

markers in Fig. 9). Instead, it is aimed to be used as a reasonable initial guess for the SQP methodology, which

can now converge to a solution of relatively high accuracy (see line with * markers in Fig. 9) as compared to

corresponding MCS data (10,000 realizations). Further, in Fig. 10 the marginal PDFs p(x) and p(ẋ) are plotted

for two indicative time instants as obtained by the above proposed hybrid ALM/SQP solution approach. In

a similar manner as in Fig. 9, comparisons with relevant MCS data (10, 000 realizations) show a relatively265

high degree of accuracy exhibited by the WPI technique. Indeed, despite the non-smooth character of the

nonlinearities involved in the Bouc-Wen model (e.g., absolute value functions in Eq. (84)) that render the

problem rather challenging, the herein developed technique has performed satisfactorily in determining the

response statistics. The corresponding joint response PDF p(x, ẋ) is shown in Fig. 11.
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Figure 10: Marginal response PDFs of a SDOF Bouc-Wen oscillator determined by the combined ALM/SQP approach at t = 1

s and t = 10 s.
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Figure 11: Joint response PDF p(x, ẋ) of a SDOF Bouc-Wen oscillator determined by the combined ALM/SQP approach at t = 1

s and t = 10 s
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6. Concluding remarks270

A methodology based on the WPI has been developed for determining the joint response transition PDF

of a broad class of nonlinear dynamical systems with singular diffusion matrices. In this regard, the WPI

technique has been extended herein to account for systems that can be represented, generally, as an underde-

termined system of SDEs coupled with a set of ODEs. Indicative examples include (but are not limited to)

systems with only some of the DOFs excited, hysteresis modeling via additional auxiliary state equations, and275

energy harvesters with coupled electro-mechanical equations. Next, interpreting the set of ODEs as constraint

equations leads to a constrained variational problem to be solved for the most probable path, and thus, the

joint response PDF is determined. To this aim, a direct functional minimization formulation has been applied,

coupled with a standard Rayleigh-Ritz solution approach. This has reduced the constrained variational prob-

lem to an ordinary constrained optimization problem. It has been shown that a nullspace solution approach280

appears computationally efficient for cases of linear constraints, whereas a SQP scheme has been employed

for the general case of nonlinear constraints. Further, a herein proposed hybrid ALM/SQP solution approach

appears more appropriate for cases of non-smooth and numerically ill-behaved nonlinear constraint equations.

In this paper, the reliability of the technique has been demonstrated by considering diverse numerical exam-

ples, including various 2-DOF oscillators with only one DOF excited. Interestingly, it has been shown that the285

special case of a linear oscillator under Kanai-Tajimi earthquake excitation, which yields a singular diffusion

matrix, can also be cast in the aforementioned form and treated under the same framework. Further, the

SDOF Bouc-Wen nonlinear hysteretic oscillator has also been considered. Comparisons with pertinent MCS

data have demonstrated a relatively high degree of accuracy.
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