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Introduction

• Engineering Stochastic Dynamics

• Wiener Path Integral (WPI) techniques                    transition PDF

• Theory of Stochastic Differential Equations (SDEs)

• Mechanical oscillators under white noise excitation: 2nd order SDEs

Singular diffusion matrix

• Mechanical oscillators under non-white excitation: higher order SDEs

ẋ = A(x, t) + B̃(x, t)⌘(t)

Chaichian and Demichev (2001) Path integrals in physics. Vol. 1. CRC Press

Psaros, Brudastova, Malara & Kougioumtzoglou, J Sound & Vibration (Under Review)
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Introduction
• A wide class of stochastic dynamics problems can be modeled as: 

Cases:
Ø Filtered white noise excitation processes 
Ø Nonlinear vibratory energy harvesters
Ø Partially (stochastically) forced structures
Ø Hysteretic systems, e.g. Bouc-Wen oscillator

• : White noise vector process

Mẍ + g(x, ẋ) =


w(t)
0

�

• Lead to singular diffusion matrices

w(t)
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WPI technique - Standard formulation

.

.

.

• Transition probability density

• Wiener path integral (WPI)            Wiener (1921), Feynman (1948) 

Lagrangian functional

• Determine        by solving:

Variational problem

minimize

Euler-Lagrange equations

Rayleigh-Ritz direct method

State Space
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WPI technique - Standard formulation

1.   From Calculus of Variations
@L
@xj

� @

@t

@L
@ẋj

+
@2

@t2
@L
@ẍj

= 0, j = 1, ..., n

Euler-Lagrange equations

x(t) ⇡  (t) + cTh(t) polynomial basis expansion of the response

• Then the functional                    becomes a function of

extremality 
condition:

c J(c)

• Enables the utilization of optimization theory and algorithms

Mẍ + g(x, ẋ) = w(t)

�J (x, ẋ, ẍ) = 0

L(x, ẋ, ẍ) = 1

2
[Mẍ + g(x, ẋ)]TB�1[Mẍ + g(x, ẋ)]

2.   The Rayleigh-Ritz direct method

coefficient matrixn⇥ L

J (x, ẋ, ẍ) =
tfR
ti

L (x, ẋ, ẍ) dt
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J (x, ẋ, ẍ)

• If the diffusion matrix is singular                   is singular B



Treatment of diffusion matrix singularity
• Separation of the governing equations into two underdetermined systems

SDEs 

Homogeneous ODEs

system equations

constraints

• The Lagrangian of the system equations is written as:  


Mf ẍ + gf(x, ẋ)
Muẍ + gu(x, ẋ)

�
=


w(t)
0

�

: non-singular square submatrix of   Bf B

Constrained variational problem

minimize

subject to Muẍ + gu(x, ẋ) = 0

1. Euler-Lagrange equations
2. Rayleigh-Ritz direct method

Two solution approaches

Lf (x, ẋ, ẍ) =
1

2
[Mf ẍ + gf(x, ẋ)]

TBf
�1[Mf ẍ + gf(x, ẋ)]

Lf

J (x, ẋ, ẍ) =
tfR
ti

Lf (x, ẋ, ẍ) dt

n�m

m
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EL equations and Lagrange multipliers 

Unconstrained variational problem
minimize where

Lagrange multiplier
vector function

J ⇤ (x, ẋ, ẍ) =
tfR
ti

L⇤ (x, ẋ, ẍ) dt

• From Calculus of Variations

• The most probable path           is the solution of the system:xc(t)

@L⇤

@xj
� @

@t

@L⇤

@ẋj
+

@2

@t2
@L⇤

@ẍj
= 0, j = 1, ..., n

Muẍ + gu(x, ẋ) = 0

n E-L equations + m constraints

• Reduction of these high order ODEs to first order

requires multiple differentiations of the constraints

Numerical methods

Computational 
complicationsGear, Leimkuhler, and Gupta (1985) J Comp. & Applied Math.

L⇤ (x, ẋ, ẍ) = Lf (x, ẋ, ẍ) + �(t)T (Muẍ + gu(x, ẋ))
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Rayleigh-Ritz method and Constrained Optimization

x(t) ⇡  (t) + cTh(t)• Polynomial basis expansion 
J (x, ẋ, ẍ) =

tfR
ti

Lf (x, ẋ, ẍ) dtfunctional nonlinear function J(c)

• Linear constraints Muẍ + gu(x, ẋ) = Muẍ + Cuẋ + Kux = 0 �(c, t) = 0

• functions      are polynomials in    with coefficients linear in c� t

Ac� b = 0

J(c) Ac� b = 0 Nonlinear optimization problem with 
linear equality constraints

• Efficient solution using nullspace of 

• minimize             subject to      

• equate all polynomial coefficients to zero

A

c 2 RL⇥n

restrict      to the subspace of             where                     is always satifiedc RL⇥n Ac� b = 0
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1st Example: Partially forced 2 DOF oscillator

t=2 sec

t=12 sec

M


ẍ1

ẍ2

�
+C


ẋ1

ẋ2

�
+K


x1

x2

�
+ 0.5


c11ẋ3

1 + k11x3
1

0

�
=


w(t)
0

�

nonlinear eq. of motion linear constraint
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Rayleigh-Ritz method and Constrained Optimization

• Nonlinear constraints Muẍ + gu(x, ẋ) = �(c, t) = 0

• minimize          subject to       

,
J(c) ⇠(c) = 0

Nonlinear optimization problem with 
nonlinear equality constraints

x(t) ⇡  (t) + cTh(t)• Polynomial basis expansion 
J (x, ẋ, ẍ) =

tfR
ti

Lf (x, ẋ, ẍ) dtfunctional nonlinear function J(c)

c 2 RL⇥n

• Augmented Lagrangian method

for                        and increasingk = 0, 1, ... µk

LA(c,�;µ) = J(c)�
mX

i=1

�i⇠i(c) +
µ

2

mX

i=1

⇠2i (c)

ck+1 = argminLA(c
k,�k;µk)

�k+1 = �k � µk⇠(ck)

Bertsekas (1985) Constrained Opt. and Lagrange Multiplier Methods

Nocedal, Wright (2006) Numerical Optimization

Dual of the Quadradic Penalty Method (QPM) 

Computational improvement over the QPM

⇠(c) =

s
tfR
ti

�2(c, t)dt = 0
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2nd Example: Partially forced 2 DOF oscillator

M


ẍ1

ẍ2

�
+C


ẋ1

ẋ2

�
+K


x1

x2

�
+ 0.5


k11x3

1

k12x3
2

�
=


w(t)
0

�

nonlinear constraintnonlinear eq. of motion

16x1 x2 ẋ1 ẋ2

t=1 sec

t=3 sec

x     x    x

MCS
Statistical Linearization

WPI



3rd Example: Bouc-Wen hysteretic oscillator
ẍ+ 2⇣0!0ẋ+ ↵!2

0x+ (1� ↵)!2
0z = w(t)

ż + �|ẋ|z|z|⌫�1 + �ẋ|z|⌫ �Aẋ = 0

system equation

constraint

• Marginal response PDFs for ν = 1 at t = 10 and 20 sec and increasing penalty factor μ
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3rd Example: Bouc-Wen hysteretic oscillator

• 2D joint response PDFs for ν = 1 at t = 15 sec

MC 10000
realizations

WPI –
Augmented 
Lagrangian

method
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Conclusions

20

• Modification of the standard WPI technique to account for systems with 

singular diffusion matrices

• Separation of the system equations into two underdetermined sub-systems 

and formulation of a constrained variational problem

Ø E-L equations and Lagrange multipliers

Ø Rayleigh-Ritz and constrained optimization

• Theoretically rigorous – Calculus of Variations

• Computational limitations

• Approximate but more versatile

• Linear constraints: Nullspace approach (very efficient)

• Nonlinear  constraints: Augmented Lagrangian method

• Examples: Partially forced MDOF oscillators with linear and nonlinear

constraints, Bouc-Wen hysteretic oscillator
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Thank you!



Appendix: Nonlinear energy harvester example

• Solution: EL equation and Lagrange multipliers

ẍ+ 2⇣ẋ+ x+ �x2 + �x3 + 2y = w(t)

ẏ + ↵y � ẋ = 0

• marginal response PDFs
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