Seismic assessment of historical masonry construction including uncertainty

Yiannis Petromichelakis Savvas Saloustros Luca Pelà

Historical masonry structures

- Important part of the cultural heritage
- Low capacity against earthquakes
- Structural analysis involves uncertainty
- Consideration of uncertainty
 - Deterministic model
 - Uncertainty modelling
 - Analysis

Case Study

- Church of the Santa Maria de Poblet monastery
 - UNESCO World Heritage Site
 - Presents damage and deformation in the main and the lateral aisles

Deterministic model - structural analysis

- 2D FE model of the most vulnerable bay
 - Deformed geometry by laser scanner survey
 - Calibrated according to equivalent 3D model
- Non-linear static (pushover) analysis
- Material behaviour
 - Continuum damage model
 - Tensile crack tracking technique

Deterministic model – seismic assessment

Uncertainty - material properties

Random variables

Uncertainty - analysis

- Monte Carlo Simulation (MCS)
 - Latin Hypercube Sampling (LHS)
- Sample size N = 200

Results – capacity curves

Results – capacity curves

Results – statistical properties

- Fragility Log-normal cumulative distribution
- Central value Geometric mean, **∂**
- Dispersion logarithmic standard deviation, **B**

Results – fragility curves

Conclusions

• Adequate strategy for built cultural heritage prior to structural intervention

 Present damage attributed to past earthquakes

• Low probability of collapse

Thank you!

Appendix

• Determination of the equivalent SDOF system

$$m^* = \sum m_i \Phi_i$$
 $F^* = \frac{F_b}{\Gamma}$ $d^* = \frac{d_n}{\Gamma}$ $\Gamma = \frac{m^*}{\sum m_i \Phi_i^2}$

Determination of the idealized bilinear curve

EURODYn-2014

Localized crack tracking technique

Step 1: Crack origin

- Principal tensile stress exceeds strength
- > Only at the boundaries of the model
- Minimum distance between two cracks

Step 2: Crack propagation

- To the principal stress direction of the element at the tip of the crack
- Stops when:
 - Stress lower than strength
 - Two cracks meet each other
 - Reaches a boundary

Localized crack tracking technique

• References:

- Cervera, M., Pelà, L., Clemente, R., Roca, P. "A cracktracking technique for localized damage in quasi-brittle materials" (2010) Engineering Fracture Mechanics, 77 (13), pp. 2431-2450.
- P. Roca, M. Cervera, L. Pelà, R. Clemente, M. Chiumenti.
 "Continuum FE models for the analysis of a representative bay in Mallorca Cathedral" (2013) Engineering Structures, 46, pp. 653-670.
- L. Pelà, M. Cervera, S. Oller and M. Chiumenti. "A localized damage model for Orthotropic Materials" (2014) Engineering Fracture Mechanics, 124–125, pp. 196–216