Influence of the boundaries in imaging for damage localization in 1D domains

Chrysoula Tsogka, Yiannis Petromichelakis and Christos G. Panagiotopoulos

Institute of Applied & Computational Mathematics Foundation for Research and Technology Hellas, Heraklion, Greece

Department of Mathematics and Applied Mathematics University of Crete, Heraklion, Greece e-mail: tsogka@uoc.gr

GRACM 2015

1 / 31

July 2015

・ロト ・ 日 ・ ・ 日 ・ ・

1 Introduction

- 2 Source localization
- 3 Defect localization
- 4 Numerical examples

5 Conclusions

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

1 Introduction

- 2 Source localization
- 3 Defect localization
- 4 Numerical examples
- **5** Conclusions

・ロト・西ト・モン・ヨー うべつ

July 2015

3 / 31

Detection and Localization of Damage

- \bullet Usually based on response recordings at a number of sensors to monitor structural integrity 1
- Detection : comparison of recordings to a reference (undamaged) state
- Localization : Inverse Problem usually ill-posed
- Solution : Time-Reversal (TR) computational tool introduced by Fink et. al.²
- Achieves refocusing of the wave on the source
- Sending back the recorded signals but reversed in time
- Two step approach
 - Forward step
 - Backward step

^{1.} GE Stavroulakis, (2000) Inverse and crack identification problems in engineering mechanics 2. Fink et. al., (2000) Time-reversed acoustics

- TR is a physical process
- It exploits the time reversibility (based on spatial reciprocity and time reversal invariance) of linear wave equations
- Robust and Simple technique for source localization
- Has been applied in Acoustics³, Elastodynamics⁴, Electromagnetism, Hydrodynamics etc.
- Finds several applications in medicine, telecommunications, underwater acoustics, seismology, engineering structures, etc.
- TR can be used for scatterer localization
- The fundamental idea of TR can be exploited to develop different imaging techniques

^{3.} L Borcea, G Papanicolaou, C Tsogka and J Berryman, (2002) Imaging and time reversal in random media

^{4.} D Givoli, (2014) Time Reversal as a Computational Tool in Acoustics and Elastodynamics.

- Acoustic medium in an 1D bounded domain
- Description of the numerical implementation of TR
- Utilization of the Green's function of the Helmholtz equation to apply imaging techniques based on TR
- Investigation of the influence of the boundaries using modal expansion of the Green's function
- Investigation of the influence of the total experiment time T
- Demonstration of numerical examples
- Proposition of techniques to improve the quality of the image and the SNR
- Indicative demonstration of a 2D example

<ロト <回ト < 回ト < 回

Introduction

2 Source localization

3 Defect localization

4 Numerical examples

5 Conclusions

・ロト・(聞)・(目)・(目)・(ロ)・

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r, t)$ is being recorded during total time T

Forward step

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

Forward step

- $\bullet\,$ The domain contains one source at x_s and one receiver at x_r
- Simulated Numerically using a finite element method
- Wave propagation model

$$\frac{1}{c^2}\frac{\partial^2 p}{\partial t^2} - \frac{\partial^2 p}{\partial x^2} = f(t)\delta(x - x_s)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Excitation function f(t) is a Ricker pulse centered at a known t_0
- The response $p(x_r,t)$ is being recorded during total time T

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2} \frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s) \delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- $\bullet\,$ The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

- Always performed numerically
- The recorded signal is time reversed and retransmitted at x_r

$$\frac{1}{c^2}\frac{\partial^2 p^{TR}}{\partial t^2} - \frac{\partial^2 p^{TR}}{\partial x^2} = p(x_r, T - t; x_s)\delta(x - x_r)$$

- Homogeneous Dirichlet boundary conditions and zero initial conditions
- Refocusing at time $t_{RF} = T t_0$
- Example with $t_0 = 3.00$ and total time T = 66.00

Frequency domain solution - Imaging

• Solution of the backward problem

$$F(x_r,t) = p(x_r,T-t) \Leftrightarrow \hat{F}(x_r,\omega) = \overline{\hat{p}(x_r,\omega)} e^{i\omega T}$$

July 2015

10 / 31

Frequency domain solution - Imaging

• Solution of the backward problem

$$F(x_r,t) = p(x_r,T-t) \Leftrightarrow \hat{F}(x_r,\omega) = \overline{\hat{p}(x_r,\omega)}e^{i\omega T}$$

Frequency domain solution - Imaging

• Solution of the backward problem

$$F(x_r, t) = p(x_r, T - t) \Leftrightarrow \hat{F}(x_r, \omega) = \overline{\hat{p}(x_r, \omega)} e^{i\omega T}$$
$$p^{TR}(x, t) = F(x_r, t) \star_t G(x_r, x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}(x_r, \omega) \hat{G}(x_r, x, \omega) d\omega$$

・ロト ・回ト ・ヨト
• Solution of the backward problem

$$F(x_r, t) = p(x_r, T - t) \Leftrightarrow \hat{F}(x_r, \omega) = \overline{\hat{p}(x_r, \omega)} e^{i\omega T}$$
$$p^{TR}(x, t) = F(x_r, t) \star_t G(x_r, x, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}(x_r, \omega) \hat{G}(x_r, x, \omega) d\omega$$

・ロト ・回ト ・ヨト

• Solution of the backward problem

$$F(x_r,t) = p(x_r,T-t) \Leftrightarrow \hat{F}(x_r,\omega) = \overline{\hat{p}(x_r,\omega)}e^{i\omega T}$$

$$p^{TR}(x,t) = F(x_r,t) \star_t G(x_r,x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}(x_r,\omega) \hat{G}(x_r,x,\omega) d\omega$$

• Evaluation of $p^{TR}(\boldsymbol{x},t)$ at the refocusing time $T-t_0$

$$p^{TR}(x,t=T-t_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\hat{p}(x_r,\omega)} \hat{G}(x_r,x,\omega) e^{i\omega t_0} d\omega$$

・ロト ・ 日 ・ ・ 日 ト

• Solution of the backward problem

$$F(x_r,t) = p(x_r,T-t) \Leftrightarrow \hat{F}(x_r,\omega) = \overline{\hat{p}(x_r,\omega)}e^{i\omega T}$$

$$p^{TR}(x,t) = F(x_r,t) \star_t G(x_r,x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{F}(x_r,\omega) \hat{G}(x_r,x,\omega) d\omega$$

• Evaluation of $p^{TR}(\boldsymbol{x},t)$ at the refocusing time $T-t_0$

$$p^{TR}(x,t=T-t_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\hat{p}(x_r,\omega)} \hat{G}(x_r,x,\omega) e^{i\omega t_0} d\omega$$

• Imaging functional - numerical approximation

$$I(x) = \frac{1}{2\pi} \sum_{i} \overline{\hat{p}(x_r, \omega_i)} \hat{G}^h(x_r, x, \omega) \Delta \omega_i$$

$$p(x_r,t) = f(t) \star_t G(x_s, x_r, t) \Leftrightarrow \hat{p}(x_r, \omega) = \hat{f}(\omega) \hat{G}(x_s, x_r, \omega)$$

$$p(x_r,t) = f(t) \star_t G(x_s, x_r, t) \Leftrightarrow \hat{p}(x_r, \omega) = \hat{f}(\omega) \hat{G}(x_s, x_r, \omega)$$

$$p(x_r,t) = f(t) \star_t G(x_s, x_r, t) \Leftrightarrow \hat{p}(x_r, \omega) = \hat{f}(\omega)\hat{G}(x_s, x_r, \omega)$$

• Substitute in the Imaging functional

$$I(x) = \frac{1}{2\pi} \sum_{i} |\hat{f}(\omega_i)|^2 \overline{\hat{G}(x_s, x_r, \omega_i)} \hat{G}(x_r, x, \omega) \Delta \omega_i$$

July 2015 11 / 31

・ロト ・ 日 ・ ・ ヨ ・ ・

$$p(x_r,t) = f(t) \star_t G(x_s, x_r, t) \Leftrightarrow \hat{p}(x_r, \omega) = \hat{f}(\omega)\hat{G}(x_s, x_r, \omega)$$

• Substitute in the Imaging functional

$$I(x) = \frac{1}{2\pi} \sum_{i} |\hat{f}(\omega_i)|^2 \overline{\hat{G}(x_s, x_r, \omega_i)} \hat{G}(x_r, x, \omega) \Delta \omega_i$$

• Modal expansion formula of the Green's function

$$G^{modal}(x,\xi,\omega) = \sum_{n=1}^{N} \frac{1}{\frac{\omega^2}{c^2} - \lambda_n} \Phi_n(x) \Phi_n(\xi)$$

・ロト ・ 日 ・ ・ 日 ト

Modal expansion

• After the calculations and omitting $\hat{f}(\omega)$

$$\widetilde{\mathbf{I}}(x) = C_0 \sum_{i=1}^{3} \left[F_i \sum_{n=1}^{N} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi A_i}{L}\right) \right]$$

i	F_i	A_i				
1	1.0	x_s				
2	0.5	$x_s + 2x_r$				
3	0.5	$x_s - 2x_r$				

• Each of the series is a periodic (period 2π) that exhibits exactly one peak every half period

$$\sum_{n=1}^{N} \sin\left(nx\right) \sin\left(n\pi/6\right)$$

Modal expansion

• After the calculations and omitting $\hat{f}(\omega)$

$$\tilde{\mathbf{I}}(x) = C_0 \sum_{i=1}^{3} \left[F_i \sum_{n=1}^{N} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi A_i}{L}\right) \right]$$

i	F_i	A_i
1	1.0	x_s
2	0.5	$x_s + 2x_r$
3	0.5	$x_s - 2x_r$

July 2015

12 / 31

• The imaging functional exhibits exactly three peaks within the interval [0,L]

Introduction

2 Source localization

3 Defect localization

4 Numerical examples

5 Conclusions

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

- $\bullet\,$ source, receiver and 1 defect small area around x_d with different wave velocity
- each time the original pulse passes from the defect it splits into a transmitted and a reflected component
- Assumption : the incident field p_{inc} is known (the response at the healthy domain)
- scattered field $p_{scat} = p_{tot} p_{inc}$ to minimize the influence of the source
- The defect acts as a multiple in time source
- $\bullet \ p_{scat}$ is time reversed and retransmitted
- not only one refocusing time but the strongest at $t^{RF} = T t_1 t_0$

イロン イロン イヨン イヨ

• Data at the receiver - Born approximation

$$\hat{p}_{scat}(x_r,\omega) = k^2 \hat{f}(\omega) \rho \hat{G}(x_s, x_d, \omega) \hat{G}(x_d, x_r, \omega)$$
(1)

• It seems natural to define an imaging functional as

$$I(x) = \sum_{i} \overline{\hat{p}_{scat}(x_r, \omega)} \hat{G}^h(x_r, x, \omega) \hat{G}^h(x, x_s, \omega)$$
(2)

- The appearance of the two Green's functions differentiates imaging from TR
- results from the two methods are not comparable unlike the source localization

 \bullet Substituting \hat{G}^h and \hat{p}_{scat} into the Born approximation

$$I(x) = \sum_{\omega} k^2 \rho \left(\hat{f}^h(\omega) \right)^2 \overline{\hat{f}(\omega)} \hat{G}(x_s, x_d, \omega) \hat{G}(x_d, x_r, \omega)} \hat{G}(x_r, x, \omega) \hat{G}(x, x_s, \omega)$$

 $\bullet\,$ Using the modal expansion of \hat{G}

$$\tilde{\mathbf{I}}(x) = C_1 \left\{ \sum_{i=1}^{13} \left[F_i \sum_{n=1}^{N} \cos\left(\frac{2n\pi x}{L}\right) \cos\left(\frac{2n\pi A_i}{L}\right) \right] + \sum_{n=1}^{N} \cos\left(\frac{2n\pi x}{L}\right) \right\} + C_2$$

・ロト ・回ト ・ヨト

Modal expansion

$$\tilde{\mathbf{I}}(x) = C_1 \left\{ \sum_{i=1}^{13} \left[F_i \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \cos\left(\frac{2n\pi A_i}{L}\right) \right] + \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \right\} + C_2$$

i	F_i	A_i	i	F_i	A_i	i	F_i	A_i	i	F_i	A_i
1	1.0	x_d	4	0.5	$x_d - x_s$	7	0.5	$x_d + x_r$	10	0.25	$x_d - x_s - x_r$
2	1.0	x_s	5	0.5	$x_d + x_s$	8	0.5	$x_s - x_r$	11	0.25	$x_d - x_s + x_r$
3	1.0	x_r	6	0.5	$x_d - x_r$	9	0.5	$x_s + x_r$	12	0.25	$x_d + x_s - x_r$
									13	0.25	$x_d + x_s + x_r$

 Each of the series is a periodic (period 2π) that exhibits exactly two peaks in every period

イロト イロト イヨト

$$\tilde{\mathbf{I}}(x) = C_1 \left\{ \sum_{i=1}^{13} \left[F_i \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \cos\left(\frac{2n\pi A_i}{L}\right) \right] + \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \right\} + C_2$$

i	F_i	A_i	i	F_i	A_i	i	F_i	A_i	i	F_i	A_i
1	1.0	x_d	4	0.5	$x_d - x_s$	7	0.5	$x_d + x_r$	10	0.25	$x_d - x_s - x_r$
2	1.0	x_s	5	0.5	$x_d + x_s$	8	0.5	$x_s - x_r$	11	0.25	$x_d - x_s + x_r$
3	1.0	x_r	6	0.5	$x_d - x_r$	9	0.5	$x_s + x_r$	12	0.25	$x_d + x_s - x_r$
									13	0.25	$x_d + x_s + x_r$

• The imaging functional exhibits exactly 26 peaks within the interval [0,L]

July 2015

17 / 31

$$\tilde{\mathbf{I}}(x) = C_1 \left\{ \sum_{i=1}^{13} \left[F_i \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \cos\left(\frac{2n\pi A_i}{L}\right) \right] + \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \right\} + C_2$$

i	F_i	A_i	i	F_i	A_i	i	F_i	A_i	i	F_i	A_i
1	1.0	x_d	4	0.5	$x_d - x_s$	7	0.5	$x_d + x_r$	10	0.25	$x_d - x_s - x_r$
2	1.0	x_s	5	0.5	$x_d + x_s$	8	0.5	$x_s - x_r$	11	0.25	$x_d - x_s + x_r$
3	1.0	x_r	6	0.5	$x_d - x_r$	9	0.5	$x_s + x_r$	12	0.25	$x_d + x_s - x_r$
-									13	0.25	$x_d + x_s + x_r$

• The imaging functional exhibits exactly 26 peaks within the interval [0,L]

July 2015

17 / 31

$$\tilde{\mathbf{I}}(x) = C_1 \left\{ \sum_{i=1}^{13} \left[F_i \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \cos\left(\frac{2n\pi A_i}{L}\right) \right] + \sum_{n=1}^N \cos\left(\frac{2n\pi x}{L}\right) \right\} + C_2$$

i	F_i	A_i	i	F_i	A_i	i	F_i	A_i	i	F_i	A_i
1	1.0	x_d	4	0.5	$x_d - x_s$	7	0.5	$x_d + x_r$	10	0.25	$x_d - x_s - x_r$
2	1.0	x_s	5	0.5	$x_d + x_s$	8	0.5	$x_s - x_r$	11	0.25	$x_d - x_s + x_r$
3	1.0	x_r	6	0.5	$x_d - x_r$	9	0.5	$x_s + x_r$	12	0.25	$x_d + x_s - x_r$
									13	0.25	$x_d + x_s + x_r$

• The imaging functional exhibits exactly 26 peaks within the interval [0,L]

July 2015

17 / 31

- In defect localization the choice of ${\boldsymbol{T}}$ is of significant importance
- Time reversal
 - If the wave travels many times across the domain, p_{scat} becomes complicated
 - Best results for $T = \frac{|x_s x_d|}{c_{ref}} + \frac{|x_d x_r|}{c_{ref}} + 2t_0$
 - Because x_d in not known, optimum choice $T = \frac{2L}{c_{ref}} + 2t_0$
- Imaging
 - The data at the receiver and Green's functions are calculated in the time domain and then FT
 - $\bullet\,$ As a result T can be taken into account similarly to the TR case
- Modal expansion
 - $\bullet\,$ It is assumed here that $T=\infty$ and thus no further discussion is meaningful
 - If Imaging is performed for very large $T(\rightarrow \infty)$ it approaches the modal expansion

イロト イポト イヨト イヨト

1 Introduction

- 2 Source localization
- 3 Defect localization
- 4 Numerical examples

5 Conclusions

<□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>
July 2015 19 / 31

• Investigation of the receiver position

イロト イロト イヨト

• Investigation of the source position

・ロト ・日本・ ・ ヨト

Source localization - Imaging

- Improvement of the SNR by increasing the number of receivers
- $\bullet\,$ Linear relationship between SNR and N_r

$$I(x) = \sum_{\omega} \sum_{r=1}^{N_r} \overline{\widehat{p}(x_r, \omega)} \widehat{G}^h(x_r, x, \omega).$$
(3)

Defect localization - TR

- Time reversal for defect localization example 1
- $\bullet\,$ Investigation of total experiment time T

イロト イロト イヨト

Defect localization - TR

- Time reversal for defect localization example 2
- $\bullet\,$ Investigation of total experiment time T

*ロト *四ト *臣

Defect localization - Imaging and modal expansion

• Comparison of Imaging $(T=\infty)$ and modal expansion

• Example 1

• Example 2

Defect localization - Imaging

• Improvement of the image quality using higher number of sources and receivers

$$I(x) = \sum_{\omega} \sum_{r=1}^{N_r} \sum_{s=1}^{N_s} \overline{\widehat{p}_{scat}(x_r,\omega)} \widehat{G}^h(x_r,x,\omega) \widehat{G}^h(x,x_s,\omega)$$
(4)

 $\bullet\,$ Improvement of the SNR by reducing total time T

A D F A B F A

Defect localization 2D example - Imaging

- 2D bounded domain, contains 20 receivers that act as sources as well
- Investigation of the total experiment time
- Much better results compared to the 1D case because :
 - In the 1D case the defect separates the domain in two parts
 - Large number of receivers and sources

$$T = 4 \frac{\sqrt{2L}}{c_0}$$

$$T = 2 \frac{\sqrt{2L}}{c_0}$$

1 Introduction

- 2 Source localization
- 3 Defect localization
- 4 Numerical examples
- 5 Conclusions

< □ ▶ < 클 ▶ < 클 ▶ < 클 ▶ 클 · ∽ 역 @ July 2015 29 / 31

- TR and Imaging for damage localization in 1D acoustic bounded media
- Exploitation of the similarities and disparities between source and defect localization problems
- Analyzed the noise resulting from the presence of the boundaries
- $\bullet\,$ Investigated the effect of the total experiment time T
- Proposition of techniques for the improvement of SNR and image quality
- Results from defect localization in 2D domain are very promising

・ロト ・日本・ ・ ヨト・

- Extend the Imaging techniques in elastic media and higher dimensions
- Investigate the localization process for noisy recordings
- Utilize passive only recordings due to ambient vibration
- Apply techniques for the separate localization of multiple defects ⁵
- $\bullet\,$ Apply this methodology on structures with complex geometry 6 for the development of SHM systems

^{5.} CG Panagiotopoulos, Y Petromichelakis, C Tsogka (2015) Time Reversal in elastodynamics and applications to Structural Health Monitoring, COMPDYN 2015

^{6.} CG Panagiotopoulos, Y Petromichelakis, C Tsogka (2015) Time reversal and imaging for structures, Chapter in "Dynamic Response of Infrastructure to Environmentally Induced Loads"