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Detection and Localization of Damage

Usually based on response recordings at a number of sensors to monitor
structural integrity 1

Detection : comparison of recordings to a reference (undamaged) state

Localization : Inverse Problem usually ill-posed

Solution : Time-Reversal (TR) computational tool introduced by Fink et. al. 2

Achieves refocusing of the wave on the source

Sending back the recorded signals but reversed in time

Two step approach
Forward step
Backward step

1. GE Stavroulakis, (2000) Inverse and crack identification problems in engineering mechanics
2. Fink et. al., (2000) Time-reversed acoustics
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Time Reversal and applications

TR is a physical process

It exploits the time reversibility (based on spatial reciprocity and time reversal
invariance) of linear wave equations

Robust and Simple technique for source localization

Has been applied in Acoustics 3, Elastodynamics 4, Electromagnetism,
Hydrodynamics etc.

Finds several applications in medicine, telecommunications, underwater
acoustics, seismology, engineering structures, etc.

TR can be used for scatterer localization

The fundamental idea of TR can be exploited to develop different imaging
techniques

3. L Borcea, G Papanicolaou, C Tsogka and J Berryman, (2002) Imaging and time reversal in
random media

4. D Givoli, (2014) Time Reversal as a Computational Tool in Acoustics and Elastodynamics
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In the present work

Acoustic medium in an 1D bounded domain

Description of the numerical implementation of TR

Utilization of the Green’s function of the Helmholtz equation to apply
imaging techniques based on TR

Investigation of the influence of the boundaries using modal expansion of the
Green’s function

Investigation of the influence of the total experiment time T

Demonstration of numerical examples

Proposition of techniques to improve the quality of the image and the SNR

Indicative demonstration of a 2D example
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Forward step

The domain contains one source at xs and one receiver at xr

Simulated Numerically using a finite element method

Wave propagation model

1

c2
∂2p

∂t2
− ∂2p

∂x2
= f(t)δ(x− xs)

Homogeneous Dirichlet boundary conditions and zero initial conditions

Excitation function f(t) is a Ricker pulse centered at a known t0

The response p(xr, t) is being recorded during total time T
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Frequency domain solution - Imaging

Solution of the backward problem

F (xr, t) = p(xr, T − t)⇔ F̂ (xr, ω) = p̂(xr, ω)eiωT

F (xr, t) = p(xr, T − t)⇔F̂ (xr, ω) = p̂(xr, ω)eiωT

pTR(x, t) = F (xr, t) ?t G(xr, x, t) =
1

2π

∞∫
−∞

F̂ (xr, ω)Ĝ(xr, x, ω)dω

Evaluation of pTR(x, t) at the refocusing time T − t0

pTR(x, t = T − t0) =
1

2π

∞∫
−∞

p̂(xr, ω)Ĝ(xr, x, ω)eiωt0dω

Imaging functional - numerical approximation

I(x) =
1

2π

∑
i

p̂(xr, ωi)Ĝ
h(xr, x, ω)∆ωi
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F̂ (xr, ω)Ĝ(xr, x, ω)dω

Evaluation of pTR(x, t) at the refocusing time T − t0

pTR(x, t = T − t0) =
1

2π

∞∫
−∞
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h(xr, x, ω)∆ωi

July 2015 10 / 31



Modal expansion

Data at the receiver

p(xr, t) = f(t) ?t G(xs, xr, t)⇔ p̂(xr, ω) = f̂(ω)Ĝ(xs, xr, ω)

Data at the receiver

p(xr, t) = f(t) ?t G(xs, xr, t)⇔p̂(xr, ω) = f̂(ω)Ĝ(xs, xr, ω)

Substitute in the Imaging functional

I(x) =
1

2π

∑
i

|f̂(ωi)|2Ĝ(xs, xr, ωi)Ĝ(xr, x, ω)∆ωi

Modal expansion formula of the Green’s function

Gmodal(x, ξ, ω) =

N∑
n=1

1
ω2

c2 − λn
Φn(x)Φn(ξ)
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Modal expansion

After the calculations and omitting f̂(ω)

Ĩ(x) = C0

3∑
i=1

[
Fi

N∑
n=1

sin
(nπx
L

)
sin

(
nπAi

L

)] i Fi Ai

1 1.0 xs
2 0.5 xs + 2xr
3 0.5 xs − 2xr

Each of the series is a periodic (period 2π) that exhibits exactly one peak
every half period

N∑
n=1

sin (nx) sin (nπ/6)

The imaging functional exhibits exactly three peaks within the interval [0,L]
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Time domain solution - TR

source, receiver and 1 defect - small area around xd with different wave
velocity

each time the original pulse passes from the defect it splits into a transmitted
and a reflected component

Assumption : the incident field pinc is known (the response at the healthy
domain)

scattered field pscat = ptot − pinc to minimize the influence of the source

The defect acts as a multiple in time source

pscat is time reversed and retransmitted

not only one refocusing time but the strongest at tRF = T − t1 − t0
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Frequency domain solution - Imaging

Data at the receiver - Born approximation

p̂scat(xr, ω) = k2f̂(ω)ρĜ(xs, xd, ω)Ĝ(xd, xr, ω) (1)

It seems natural to define an imaging functional as

I(x) =
∑
i

p̂scat(xr, ω)Ĝh(xr, x, ω)Ĝh(x, xs, ω) (2)

The appearance of the two Green’s functions differentiates imaging from TR

results from the two methods are not comparable unlike the source
localization
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Modal expansion

Substituting Ĝh and p̂scat into the Born approximation

I(x) =
∑
ω

k2ρ
(
f̂h(ω)

)2
f̂(ω)Ĝ(xs, xd, ω)Ĝ(xd, xr, ω)Ĝ(xr, x, ω)Ĝ(x, xs, ω)

Using the modal expansion of Ĝ

Ĩ(x) = C1

{
13∑
i=1

[
Fi

N∑
n=1

cos

(
2nπx

L

)
cos

(
2nπAi

L

)]
+

N∑
n=1

cos

(
2nπx

L

)}
+ C2

July 2015 16 / 31



Modal expansion
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{
13∑
i=1

[
Fi

N∑
n=1

cos

(
2nπx

L

)
cos

(
2nπAi

L

)]
+

N∑
n=1

cos

(
2nπx

L

)}
+ C2

i Fi Ai i Fi Ai i Fi Ai i Fi Ai

1 1.0 xd 4 0.5 xd − xs 7 0.5 xd + xr 10 0.25 xd − xs − xr
2 1.0 xs 5 0.5 xd + xs 8 0.5 xs − xr 11 0.25 xd − xs + xr
3 1.0 xr 6 0.5 xd − xr 9 0.5 xs + xr 12 0.25 xd + xs − xr

13 0.25 xd + xs + xr

Each of the series is a periodic (period 2π) that exhibits exactly two peaks in
every period

N∑
n=1

cos (nx) cos (nπ/6)

The imaging functional exhibits exactly 26 peaks within the interval [0,L]
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Total experiment time

In defect localization the choice of T is of significant importance
Time reversal

If the wave travels many times across the domain, pscat becomes complicated
Best results for T = |xs−xd|

cref
+ |xd−xr|

cref
+ 2t0

Because xd in not known, optimum choice T = 2L
cref

+ 2t0

Imaging
The data at the receiver and Green’s functions are calculated in the time
domain and then FT
As a result T can be taken into account similarly to the TR case

Modal expansion
It is assumed here that T = ∞ and thus no further discussion is meaningful
If Imaging is performed for very large T (→ ∞) it approaches the modal
expansion
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Source localization - Imaging

Investigation of the receiver position

July 2015 20 / 31



Source localization - Imaging

Investigation of the source position
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Source localization - Imaging

Improvement of the SNR by increasing the number of receivers

Linear relationship between SNR and Nr

I(x) =
∑
ω

Nr∑
r=1

p̂(xr, ω)Ĝh(xr, x, ω). (3)
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Defect localization - TR

Time reversal for defect localization example 1

Investigation of total experiment time T
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Defect localization - TR

Time reversal for defect localization example 2

Investigation of total experiment time T
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Defect localization - Imaging and modal expansion

Comparison of Imaging (T=∞) and modal expansion

Example 1

Example 2
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Defect localization - Imaging

Improvement of the image quality using higher number of sources and
receivers

I(x) =
∑
ω

Nr∑
r=1

Ns∑
s=1

p̂scat(xr, ω)Ĝh(xr, x, ω)Ĝh(x, xs, ω) (4)
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Defect localization - Imaging

Improvement of the SNR by reducing total time T
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Defect localization 2D example - Imaging

2D bounded domain, contains 20 receivers that act as sources as well

Investigation of the total experiment time

Much better results compared to the 1D case because :
In the 1D case the defect separates the domain in two parts
Large number of receivers and sources

T = 10
√
2L
c0

T = 4
√
2L
c0

T = 2
√
2L
c0
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Summary and Conclusions

TR and Imaging for damage localization in 1D acoustic bounded media

Exploitation of the similarities and disparities between source and defect
localization problems

Analyzed the noise resulting from the presence of the boundaries

Investigated the effect of the total experiment time T

Proposition of techniques for the improvement of SNR and image quality

Results from defect localization in 2D domain are very promising

July 2015 30 / 31



Future work

Extend the Imaging techniques in elastic media and higher dimensions

Investigate the localization process for noisy recordings

Utilize passive only recordings due to ambient vibration

Apply techniques for the separate localization of multiple defects 5

Apply this methodology on structures with complex geometry 6 for the
development of SHM systems

5. CG Panagiotopoulos, Y Petromichelakis, C Tsogka (2015) Time Reversal in elastodynamics
and applications to Structural Health Monitoring, COMPDYN 2015

6. CG Panagiotopoulos, Y Petromichelakis, C Tsogka (2015) Time reversal and imaging for
structures, Chapter in "Dynamic Response of Infrastructure to Environmentally Induced Loads"
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