Damage detection and imaging in solids based on recorded elastodynamic response

Christos G. Panagiotopoulos, Yiannis Petromichelakis and Chrysoula Tsogka

Institute of Applied \& Computational Mathematics
Foundation for Research and Technology Hellas, Heraklion, Greece
Department of Mathematics and Applied Mathematics
University of Crete, Heraklion, Greece
e-mail: tsogka@uoc.gr
$11^{\text {th }}$ HSTAM Congress 2016, Athens

Table of contents

(1) Introduction
(2) Source localization
(3) Defect localization

4 Numerical examples
(5) Conclusions

Table of contents

(1) Introduction
(2) Source localization
(3) Defect localization

4 Numerical examples
(5) Conclusions

Detection and Localization of Damage

- Usually based on response recordings at a number of sensors to monitor structural integrity ${ }^{1}$
- Detection : comparison of recordings to a reference (undamaged) state
- Localization: Inverse Problem usually ill-posed
- Solution : Time-Reversal (TR) computational tool introduced by Fink et. al. ${ }^{2}$
- Achieves refocusing of the wave on the source
- Sending back the recorded signals but reversed in time
- Two step approach
- Forward step
- Backward step

1. GE Stavroulakis, (2000) Inverse and crack identification problems in engineering mechanics
2. Fink et. al., (2000) Time-reversed acoustics

Time Reversal and applications

- TR is a physical process
- It exploits the time reversibility (based on spatial reciprocity and time reversal invariance) of linear wave equations
- Robust and Simple technique for source localization
- Has been applied in Acoustics ${ }^{3}$, Elastodynamics ${ }^{4}$, Electromagnetism, Hydrodynamics etc.
- Finds several applications in medicine, telecommunications, underwater acoustics, seismology, engineering structures, etc.
- TR can be used for scatterer localization

[^0]
In the present work

- Imaging techniques that exploit the fundamental idea of TR
- Description of the numerical implementation for the elastic wave propagation
- Utilization of the Green's function of the Elastodynamic equation to apply imaging techniques
- 2D rectangular bounded domain with elastic behavior
- Investigation of the influence of the boundaries in imaging
- Investigation of the main factors that affect the quality of the image

Table of contents

(1) Introduction
(2) Source localization
(3) Defect localization

4 Numerical examples
(5) Conclusions

Forward step

- Simulated Numerically using a mixed finite element formulation ${ }^{5}$
- The domain contains one source at \boldsymbol{x}_{s} and N_{r} receivers at $\boldsymbol{x}_{r}, r=1, \ldots, N_{r}$
- Wave propagation model, Velocity - Stress (first order)

$$
\begin{aligned}
\rho \frac{\partial \mathbf{v}}{\partial t}-\operatorname{div} \sigma & =\delta\left(\boldsymbol{x}-\boldsymbol{x}_{s}\right) f(t) \boldsymbol{e}_{i} & \\
A: \frac{\partial \sigma}{\partial t}-\dot{\varepsilon} & =0 & \dot{\varepsilon}_{i j}=\frac{1}{2}\left(\frac{\partial \mathrm{v}_{i}}{\partial x_{j}}+\frac{\partial \mathrm{v}_{j}}{\partial x_{i}}\right)
\end{aligned}
$$

- Homogeneous Neumann boundary conditions and zero initial conditions
- Excitation function $f(t)$ is a Ricker pulse centered at a known t_{0}
- The response is being recorded during total time T

5. E Bécache, P Joly and C Tsogka (2002) A new family of mixed finite elements for the linear elastodynamic problem.

Time domain solution - TR Backward step

- Always performed numerically in SHM applications
- The recorded signal is time reversed and retransmitted at \boldsymbol{x}_{r}
- Sensors acting as sources introducing right hand side loading terms

$$
\rho \frac{\partial \mathbf{v}^{T R}}{\partial t}-\operatorname{div} \sigma^{T R}=\sum_{r=1}^{N_{r}} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{r}\right) \mathrm{v}\left(\boldsymbol{x}_{r}, T-t\right)
$$

- Homogeneous Neumann boundary conditions and zero initial conditions
- Refocusing at time $t_{R F}=T-t_{0}$

Frequency domain solution - Imaging

- Solution of the backward problem

$$
\mathrm{F}\left(\boldsymbol{x}_{r}, t\right)=\mathrm{v}\left(\boldsymbol{x}_{r}, T-t\right) \Leftrightarrow \hat{\mathrm{F}}\left(x_{r}, \omega\right)=\overline{\hat{\mathrm{v}}\left(x_{r}, \omega\right)} e^{i \omega T}
$$

Frequency domain solution - Imaging

- Solution of the backward problem

$$
\mathrm{F}\left(\boldsymbol{x}_{r}, t\right)=\mathrm{v}\left(\boldsymbol{x}_{r}, T-t\right) \Leftrightarrow \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right)=\overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega\right)} e^{i \omega T}
$$

Frequency domain solution - Imaging

- Solution of the backward problem

$$
\begin{aligned}
& \mathrm{F}\left(x_{r}, t\right)=\mathrm{v}\left(x_{r}, T-t\right) \Leftrightarrow \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right)=\overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega\right)} e^{i \omega T} \\
& \mathrm{v}^{T R}(\boldsymbol{x}, t)=\mathrm{G}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, t\right) \star_{t} \mathrm{~F}\left(\boldsymbol{x}_{r}, t\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\mathrm{G}}\left(x^{-\infty}, x_{r}, \omega\right) \hat{\mathrm{F}}\left(x_{r}, \omega\right) \mathrm{d} \omega
\end{aligned}
$$

Frequency domain solution - Imaging

- Solution of the backward problem

$$
\begin{aligned}
& \mathrm{F}\left(x_{r}, t\right)=\mathrm{v}\left(x_{r}, T-t\right) \Leftrightarrow \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right)=\overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega\right)} e^{i \omega T} \\
& \mathrm{v}^{T R}(\boldsymbol{x}, t)=\mathrm{G}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, t\right) \star_{t} \mathrm{~F}\left(\boldsymbol{x}_{r}, t\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\mathrm{G}}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega\right) \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right) \mathrm{d} \omega
\end{aligned}
$$

Frequency domain solution - Imaging

- Solution of the backward problem

$$
\begin{aligned}
\mathrm{F}\left(x_{r}, t\right)=\mathrm{v}\left(x_{r}, T-t\right) \Leftrightarrow \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right) & =\overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega\right)} e^{i \omega T} \\
\mathrm{v}^{T R}(\boldsymbol{x}, t)=\mathrm{G}\left(x, x_{r}, t\right) \star_{t} \mathrm{~F}\left(x_{r}, t\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\mathrm{G}}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega\right) \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right) \mathrm{d} \omega
\end{aligned}
$$

- Evaluation of $\mathrm{v}^{T R}(\boldsymbol{x}, t)$ at the refocusing time $T-t_{0}$

$$
\mathrm{v}^{T R}\left(\boldsymbol{x}, t=T-t_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\mathrm{G}}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega\right) \overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega\right)} e^{i \omega t_{0}} \mathrm{~d} \omega
$$

Frequency domain solution - Imaging

- Solution of the backward problem

$$
\begin{aligned}
\mathrm{F}\left(x_{r}, t\right)=\mathrm{v}\left(x_{r}, T-t\right) \Leftrightarrow \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right) & =\overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega\right)} e^{i \omega T} \\
\mathrm{v}^{T R}(\boldsymbol{x}, t)=\mathrm{G}\left(x, x_{r}, t\right) \star_{t} \mathrm{~F}\left(x_{r}, t\right) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\mathrm{G}}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega\right) \hat{\mathrm{F}}\left(\boldsymbol{x}_{r}, \omega\right) \mathrm{d} \omega
\end{aligned}
$$

- Evaluation of $\mathrm{v}^{T R}(\boldsymbol{x}, t)$ at the refocusing time $T-t_{0}$

$$
\mathrm{v}^{T R}\left(\boldsymbol{x}, t=T-t_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{\mathrm{G}}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega\right) \overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega\right)} e^{i \omega t_{0}} \mathrm{~d} \omega
$$

- Imaging functional - numerical approximation

$$
\mathrm{I}(\boldsymbol{x})=\frac{1}{2 \pi} \sum_{i, r} \hat{\mathrm{G}}^{h}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega_{i}\right)} \Delta \omega_{i}
$$

Numerical implementation of Imaging

- More precisely

$$
\begin{aligned}
& \mathrm{I}(\boldsymbol{x})=\left[\begin{array}{c}
\mathbf{I}_{x}(\boldsymbol{x}) \\
\mathbf{I}_{y}(\boldsymbol{x})
\end{array}\right], \quad \overline{\hat{\mathrm{v}}\left(\boldsymbol{x}_{r}, \omega_{i}\right)}=\left[\begin{array}{l}
\overline{\mathrm{v}_{x}\left(\boldsymbol{x}_{r}, \omega_{i}\right)} \\
\overline{\mathrm{v}_{y}\left(\boldsymbol{x}_{r}, \omega_{i}\right)}
\end{array}\right], \\
& \hat{\mathrm{G}}^{h}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right)=\left[\begin{array}{ll}
\mathbf{G}_{x x}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) & \mathbf{G}_{x y}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \\
\mathbf{G}_{y x}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) & \mathbf{G}_{y y}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right)
\end{array}\right]
\end{aligned}
$$

- The final image \mathbf{I} can be a combination (e.g. SRSS) of \mathbf{I}_{x} and \mathbf{I}_{y}, where

$$
\left[\begin{array}{l}
\mathbf{I}_{x}(\boldsymbol{x}) \\
\mathbf{I}_{y}(\boldsymbol{x})
\end{array}\right]=\frac{\Delta \omega}{2 \pi} \sum_{i, r}\left[\begin{array}{l}
\mathbf{G}_{x x}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\overline{v_{x}\left(\boldsymbol{x}_{r}, \omega_{i}\right)}}+\mathbf{G}_{x y}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\mathbf{v}_{y}\left(\boldsymbol{x}_{r}, \omega_{i}\right)} \\
\mathbf{G}_{y x}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{v_{x}\left(\boldsymbol{x}_{r}, \omega_{i}\right)}+\mathbf{G}_{y y}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \bar{v}_{y}\left(\boldsymbol{x}_{r}, \omega_{i}\right)
\end{array}\right]
$$

Table of contents

(1) Introduction
(2) Source localization
(3) Defect localization

4 Numerical examples

(5) Conclusions

Time domain solution - TR

- Source, receivers and 1 defect - small area around x_{d} with different wave velocity
- Each time the original pulse passes from the defect it splits into a transmitted and a reflected component
- Assumption : the incident field $\mathbf{v}_{\text {inc }}$ is known (response in the healthy domain)
- scattered filed $\mathbf{v}_{\text {scat }}=\mathbf{v}_{\text {tot }}-\mathbf{v}_{\text {inc }}$ to minimize the influence of the source
- The defect acts as a multiple in time source
- $\mathbf{v}_{\text {scat }}$ is time reversed and retransmitted
- Not only one refocusing time but the strongest at $t_{R F}=T-t_{1}-t_{0}$

Frequency domain solution - Imaging

- Data at the receiver - Born approximation

$$
\hat{\mathrm{v}}_{s c a t}\left(\boldsymbol{x}_{r}, \omega\right)=k^{2} \hat{f}(\omega) \rho \hat{\mathrm{G}}\left(\boldsymbol{x}_{s}, \boldsymbol{x}_{d}, \omega\right) \hat{\mathrm{G}}\left(\boldsymbol{x}_{d}, \boldsymbol{x}_{r}, \omega\right)
$$

- It seems natural to define the imaging functional as

$$
\mathrm{I}(\boldsymbol{x})=\sum_{i, r} \hat{\mathrm{G}}^{h}\left(\boldsymbol{x}, \boldsymbol{x}_{s}, \omega_{i}\right) \hat{\mathrm{G}}^{h}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\hat{\mathrm{v}}_{\text {scat }}\left(\boldsymbol{x}_{r}, \omega_{i}\right)} \Delta \omega_{i}
$$

- Equivalently to source localization, we compute

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{I}_{x}(\boldsymbol{x}) \\
\mathbf{I}_{y}(\boldsymbol{x})
\end{array}\right]=} & \frac{\Delta \omega}{2 \pi} \sum_{i, r}\left[\begin{array}{cc}
\mathbf{G}_{x x}\left(\boldsymbol{x}, \boldsymbol{x}_{s}, \omega_{i}\right) & \mathbf{G}_{x y}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \\
\mathbf{G}_{y x}\left(\boldsymbol{x}, \boldsymbol{x}_{s}, \omega_{i}\right) & \mathbf{G}_{y y}\left(\boldsymbol{x}, \boldsymbol{x}_{s}, \omega_{i}\right)
\end{array}\right] \times \\
& {\left[\begin{array}{l}
\mathbf{G}_{x x}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\mathbf{v}_{x}\left(\boldsymbol{x}_{r}, \omega_{i}\right)}+\mathbf{G}_{x y}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\mathbf{v}_{y}\left(\boldsymbol{x}_{r}, \omega_{i}\right)} \\
\mathbf{G}_{y x}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\mathrm{v}_{x}\left(\boldsymbol{x}_{r}, \omega_{i}\right)}+\mathbf{G}_{y y}\left(\boldsymbol{x}, \boldsymbol{x}_{r}, \omega_{i}\right) \overline{\mathrm{v}_{y}\left(\boldsymbol{x}_{r}, \omega_{i}\right)}
\end{array}\right] }
\end{aligned}
$$

Table of contents

(1) Introduction
(2) Source localization
(3) Defect localization

4 Numerical examples

(5) Conclusions

Numerical example - source localization

- Geometry : rectangular domain
$\mathrm{L}_{x}=10$. and $\mathrm{L}_{y}=10$.
- Mesh (numerical solution) : 200×200 grid with rectangular elements
- Mesh (Imaging) : 50×50 grid with rectangular elements
- Material : elastic with Lamé coefficients $\lambda=1$. and $\mu=1$.
- Velocities: pressure waves $\mathrm{c}_{p}=1.73$ and shear waves $\mathrm{c}_{s}=1$.

- Excitation function : Ricker pulse at a central frequency 2.

Numerical example - source localization

1 source and 1 receiver - increasing total time T

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=0.5$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=0.6534$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=1$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=0.9678$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=2$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=1.1967$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=3$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=1.4648$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=5$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=1.6664$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=10$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=1.7472$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=20$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=1.789$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=30$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=2.1821$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=40$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=2.392$

Numerical example - source localization

1 source and 1 receiver - increasing total time T
$\mathrm{T}=50$ diagonals, $\mathrm{SNR}=\mathrm{p} 1 / \mathrm{p} 2=2.44$

Numerical example - source localization

1 source and 1 receiver - increasing total time T

Numerical example - source localization

1 source and increasing number of receivers

Numerical example - source localization

1 source and increasing number of receivers
$\mathrm{Nr}=1, \mathrm{~T}=10$ diagonals, $\mathrm{SNR}=2.3351$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=2, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=2.5843
$$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=3, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=3.5819
$$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=4, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=4.2135
$$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=5, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=4.7374
$$

Numerical example - source localization

1 source and increasing number of receivers
$\mathrm{Nr}=6, \mathrm{~T}=10$ diagonals, $\mathrm{SNR}=4.8888$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=7, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=5.3904
$$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=8, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=5.5286
$$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=9, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=5.9734
$$

Numerical example - source localization

1 source and increasing number of receivers

$$
\mathrm{Nr}=10, \mathrm{~T}=10 \text { diagonals, } \mathrm{SNR}=5.7849
$$

Numerical example - source localization

1 source and increasing number of receivers

Numerical example - defect localization

- Geometry : rectangular domain $\mathrm{L}_{x}=10$. and $\mathrm{L}_{y}=10$.
- Mesh (numerical solution) : 200×200 grid with rectangular elements
- Mesh (Imaging) : 200×200 grid with rectangular elements
- Material : elastic with Lamé coefficients $\lambda=1$. and $\mu=1$.
- Velocities : pressure waves $\mathrm{c}_{p}=1.73$ and shear waves $\mathrm{c}_{s}=1$.
- Excitation function : Ricker pulse with central frequency 4.
- Defect :

```
    location: (3.5,4.5)
    size:0.05 < 0.05
    material : \lambda=0.5 and }\mu=1
```


Numerical example - defect localization

1 defect, 1 source and array of 13 receivers

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers
scattered field

total field

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers

Numerical example - defect localization

1 defect, 1 source and array of 13 receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Numerical example - defect localization

1 defect, 1 source and increasing number of receivers

Table of contents

(1) Introduction
(2) Source localization

3 Defect localization

4 Numerical examples
(5) Conclusions

Summary and Conclusions

- Application of TR based imaging techniques ${ }^{6}$ for source and scatterer localization in elastic bounded domains
- Very efficient compared to TR, the Green's functions are compute only once
- Difficulties in the elastic medium due to the two types of waves (pressure and shear) and their conversions
- Source localization :
sensor configuration : distributed or array
steady increase and convergence of SNR for increasing total time T
approximately linear increase of SNR for increasing number of sensors
Boundaries : positive influence
- Defect localization :
sensor configuration : array
total time T is very important, should be carefully chosen approximately linear increase of SNR for increasing number of sensors Boundaries: negative influence

6. L Borcea, G Papanicolaou, C Tsogka and J Berryman, (2002) Imaging and time reversal in random media

Future work

- Extensive investigation of the distributed sensor configuration
- Propose optimal total experiment time
- Investigation of the methodology using passive noisy recordings as input data
- Account for dissipation (damping) and dispersion
- Application to structures with complex geometry

Thank you!

Source localization - Forward step

Source localization - Forward step

1.41421

Source localization - Forward step

Source localization - Forward step

7.07107

Source localization - Forward step

Source localization - Forward step

14.6135

Source localization - Forward step

Source localization - Forward step

24.0416

Source localization - Forward step

Source localization - Forward step

Source localization - Forward step

26.8701

Source localization - Forward step

Source localization - Forward step

33.4697

Source localization - Forward step

34.4125

Source localization - Forward step

Source localization - Forward step

36.2981

Source localization - Forward step

Source localization - Backward step

Source localization - Backward step

1.41421

Source localization - Backward step

Source localization - Backward step

Source localization - Backward step

Source localization - Backward step

5.18545

Source localization - Backward step

Source localization - Backward step

7.07107

Source localization - Backward step

8.01388

Source localization - Backward step

Source localization - Backward step

Source localization - Backward step

10.8423

Source localization - Backward step

11.7851

Source localization - Backward step

12.7279

Source localization - Backward step

13.6707

Source localization - Backward step

14.6135

Source localization - Backward step

15.5563

Source localization - Backward step

16.4992

Source localization - Backward step

17.442

Source localization - Backward step

Source localization - Backward step

19.3276

Source localization - Backward step

Source localization - Backward step

Source localization - Backward step

22.156

Source localization - Backward step

Source localization - Backward step

24.0416

Source localization - Backward step

Source localization - Backward step

25.9272

Source localization - Backward step

26.8701

Source localization - Backward step

Source localization - Backward step

Source localization - Backward step

Source localization - Backward step

30.6413

Source localization - Backward step

Source localization - Backward step

Source localization - Backward step

33.4697

Source localization - Backward step

34.4125

Source localization - Backward step

35.3553

Source localization - Backward step

36.2981

Source localization - Backward step

[^0]: 3. L Borcea, G Papanicolaou, C Tsogka and J Berryman, (2002) Imaging and time reversal in random media
 4. D Givoli, (2014) Time Reversal as a Computational Tool in Acoustics and Elastodynamics
